Phylodynamic analysis of the dissemination of HIV-1 CRF01_AE in Vietnam

Huanan Liao a, Kok Keng Tee a, Saiki Hase a, Rie Uenishi a, Xiao-Jie Li a,b, Shigeru Kusagawa a, Pham Hong Thang c, Nguyen Tran Hien c, Oliver G. Pybus d, Yutaka Takebe a,⁎

a Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
b Department of Dermatology, The First People’s Hospital, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai 200080, China
c National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, Vietnam
d Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

A R T I C L E   I N F O
Article history:
Received 18 February 2009
Returned to author for revision 21 March 2009
Accepted 14 May 2009
Available online 21 June 2009

Keywords:
CRF01_AE
Injection drug user
Most recent common ancestor (MRCA)
Bayesian analysis
Vietnam
China

A B S T R A C T
To estimate the epidemic history of HIV-1 CRF01_AE in Vietnam and adjacent Guangxi, China, we determined near full-length nucleotide sequences of CRF01_AE from a total of 33 specimens collected in 1997–1998 from different geographic regions and risk populations in Vietnam. Phylogenetic and Bayesian molecular clock analyses were performed to estimate the date of origin of CRF01_AE lineages. Our study reconstructs the timescale of CRF01_AE expansion in Vietnam and neighboring regions and suggests that the series of CRF01_AE epidemics in Vietnam arose by the sequential introduction of founder strains into new locations and risk groups. CRF01_AE appears to have been present among heterosexuals in South-Vietnam for more than a decade prior to its epidemic spread in the early 1990s. In the late 1980s, the virus spread to IDUs in Southern Vietnam and subsequently in the mid-1990s to IDUs further north. Our results indicate the northward dissemination of CRF01_AE during this time.

© 2009 Elsevier Inc. All rights reserved.

Introduction
HIV-1 infection in Vietnam was first documented in a young woman who was presumably infected by her foreign partner in late 1990 in Ho Chi Minh City (Lindan et al., 1997). By the early 1990s, HIV-1 had spread slowly among female commercial sex workers (FSWs) and their clients. However, in 1993, an HIV-1 epidemic broke out among injecting drug users (IDUs) in Khanh Hoa Province and Ho Chi Minh City in Southern Vietnam (Subcommittee, 1998). By the end of 2005 the epidemic had spread to Northern Vietnam (UNAIDS/WHO, 2006a). Between 2000 and 2007, the estimated number of people living with HIV in Vietnam more than doubled from 122,000 to 290,000, and approximately 40,000 Vietnamese are estimated to be infected with HIV each year (UNAIDS/WHO, 2008).

CRF01_AE is almost the sole HIV-1 strain circulating in Vietnam, in all geographical regions and risk populations (Lan et al., 2003; Osmanov et al., 2002; Weniger et al., 1994). Only a few cases of HIV-1 subtype B infection have been reported so far (including the first Vietnamese case reported in 1990) (Kato et al., 1999; Menu et al., 1996). Previous studies, including ours, have identified genetic differences among HIV-1 CRF01_AE strains sampled from different locations and risk populations (Beyrer et al., 2000; Kusagawa et al., 1999; Nerurkar et al., 1996; Yu et al., 1999), and the similarity of viruses circulating among IDUs in Northern Vietnam and the nearby Guangxi Province of China suggests the cross-border transmission of CRF01_AE (Kato et al., 2001, 1999; Piyasirisilp et al., 2000).

In this study, we investigated the timescale and epidemic history of CRF01_AE transmission in Vietnam and neighboring locations, using established phylogenetic and evolutionary analysis methods.

Results
Phylogenetic characteristics of CRF01_AE isolates from Vietnam
A total of 33 near full-length nucleotide sequences (HXB2: 790–8795) representing CRF01_AE infections from Vietnam were subjected to phylogenetic analysis together with available reference sequences. The similarity between Vietnamese isolates and each subtype was calculated by Simplot analysis. The Vietnamese isolate (97VNH10) showed greatest similarity with CRF01_AE (CM240), and this was confirmed by bootscanning analysis. One representative result (for 97VNH10, which belongs to cluster 3) is shown in Figs. 1B and C. The recombination analysis results of other Vietnamese isolates were similar to those shown in Figs. 1B and C (data not shown). These results indicate that Vietnamese isolates obtained in the present study are CRF01_AE without evidence of further recombination events. Maximum likelihood trees revealed that all of the Vietnamese and Guangxi CRF01_AE sequences (except three) grouped as a single monophyletic cluster within the Thai isolates (Fig. 1A). The Vietnamese sequence group is composed of three distinct clusters (Fig. 1A...
HIV-1 CRF01_AE strains from Vietnam grouped into three distinct clusters. (A) Maximum clade credibility (MCC) tree of near full-length HIV-1 CRF01_AE isolates obtained by Bayesian MCMC analysis (see Materials and methods for details). Symbols represent different locations and risk groups: ♦ = African CRF01_AE; ☑ = Thailand CRF01_AE; ■ = heterosexuals in Southern Vietnam; ○ = IDU in Southern Vietnam; ● = IDU in Northern Vietnam; ▲ = heterosexuals in Northern Vietnam; △ = IDU in Guangxi Province of China. Posterior probabilities are indicated for each cluster. Scale bar is years. (B) The similarity between the Vietnam isolates and the references were plotted using Simplot program. (C) The recombination analysis of each Vietnamese isolate was performed by BootScan within SimPlot program. The reference subtypes are indicated in the box.

and Supplemental Fig. S1). Cluster 1 (n = 13) is paraphyletic and exclusively contains sequences from heterosexuals in Southern Vietnam. Cluster 2 (n = 9) is paraphyletic and contains sequences from IDUs in Southern Vietnam (n = 8) plus one sequence from a Northern Vietnamese STD patient (98VNND15). Cluster 3 (n = 10) is monophyletic and contains sequences from IDUs in Northern Vietnam (n = 8) and the nearby Chinese province of Guangxi (n = 2). The only exceptions that did not belong to these clusters are 3 specimens from...
Cluster Value (HPD) of the evolutionary parameter according to the indicated model – A


Cluster 1 1980.8 (1979.4 – 1982.4) 175.926 1982.0 (1980.8 – 1983.4) 128.040


Table 2

<table>
<thead>
<tr>
<th>Location</th>
<th>Risk factor</th>
<th>Thai cluster</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Vietnam</td>
<td>Sexual 3</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Northern Vietnam</td>
<td>Sexual 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

a Specimens from An Giang.
b Specimens from Ho Chi Minh City; 3 specimens from An Giang.

evolutionary analysis of near full-length CRF01_AE sequences from Vietnam near the Cambodian border. Other heterosexual specimens collected from Ho Chi Minh City (n = 5) and An Giang (n = 8) grouped together in cluster 1 (Fig. 1A). This suggests that CRF01_AE strains

Discussion

Full-length genomic sequencing helps to understand HIV-1 genetic diversity and contributes to the fields of HIV epidemiology, diagnosis, pathogenesis, and vaccine development. Our phylogenetic and evolutionary analysis of near full-length CRF01_AE sequences from Vietnam indicates that HIV-1 CRF01_AE was introduced from Africa to Thailand in the late 1970s (Figs. 2 and 3; Table 2). This lineage is likely the ancestor of all CRF01_AE strains in Asia. Our CRF01_AE sequences from Vietnam and Guangxi (China) clustered within the Thai sequences and could be classified into three distinct phylogenetic clusters (clusters 1 through 3) (Fig. 1A and Supplemental Fig. S1). Each cluster was associated almost exclusively with a specific risk population in a particular geographic location (Table 1; Fig. 1A). The pattern of monophyly and paraphyly suggests that CRF01_AE in Vietnam originated from Thailand and points towards the transmission of CRF01_AE between heterosexuals and IDUs in Southern Vietnam. WHO has reported that the use of non-sterile injecting equipment is widespread in Vietnam, and significant percentages of fCSW inject drugs, many of whom had clients who were IDUs (UNAIDS/WHO, 2006b). Our results show that CRF01_AE was transmitted from heterosexuals (Cluster 1) to IDUs (Cluster 2) among risk populations in Southern Vietnam in the late 1980s. A more recent cluster (cluster 3) that contains strains from IDUs in Northern Vietnam and Guangxi, China is located within cluster 2 (Table 1; Fig. 1A), indicating the northward dissemination of CRF01_AE among IDUs in Vietnam (Fig. 3). This result is in agreement with our previous study, in suggesting that cross-border transmission of CRF01_AE between Vietnam and China occurs (Kato et al., 2001, 1999). However, current sampling prevents us from pinpointing the exact route between these two regions.

Table 2

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Estimated substitution rates and dates of origin for each clustera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value (HPD) of the evolutionary parameter according to the indicated model</td>
</tr>
<tr>
<td></td>
<td>GTR + y constant size</td>
</tr>
<tr>
<td></td>
<td>Strict</td>
</tr>
</tbody>
</table>

a Based on BEAST analysis under the Constant size demographic model.
entered the Southern Vietnamese heterosexual population several times from Thailand, probably through Cambodia, and that An Giang is a likely portal of entry of CRF01_AE.

The results presented in Fig. 1A and Table 2 imply that CRF01_AE spread to sexual risk populations in Southern Vietnam very shortly after its introduction to Thailand, suggesting a frequent exchange of infected individuals within this region. The transmission of CRF01_AE from heterosexuals to IDUs in Southern Vietnam took nearly 10 years, however, the spread of this strain, once in IDUs, from Southern to Northern Vietnam took less time, about 5 years (Table 2 and Supplemental Table S2; Fig. 2). These results suggest a greater degree of mixing of IDUs from different regions in Vietnam than among heterosexual risk populations from different regions.

The estimated date of the most recent common ancestor of Thai CRF01_AE appears predate the discovery, in 1989, of an increase in HIV-1 seropositivity in Northern Thailand (McCutchan et al., 1992; Menu et al., 1996). In addition, the origin of cluster 1 occurred 10 years or more before the detection of an outbreak among heterosexuals in Southern Vietnam, believed to have taken place in the early 1990s (Menu et al., 1996; Ou et al., 1993). These observations may reflect the initially slow process of virus spread among risk populations during the earliest phases of exponential epidemic spread.

Through back-calculation, AIDS case reporting can provide information on transmission patterns and levels of infection approximately 5–10 years in the past (Gilbert et al., 2007; UNAIDS/WHO, 2006a). Gilbert et al. (2007) have suggested that HIV-1 was circulating in the United States — one of the world’s most medically-sophisticated regions — for more than a decade before AIDS was recognized. This conclusion was based on evolutionary analysis of HIV-1 subtype B in the United States (Gilbert et al., 2007). The apparent lag time between the introduction of the virus into a new area/population and the first recognition of symptomatic patients that we observed in Vietnam is, perhaps surprisingly, similar to the observation by Gilbert et al. (2007). Among individuals enrolled in large epidemiologic studies in Western countries, the mean time from infection with HIV to the development of AIDS-related symptoms has been approximately 10 to 12 years in the absence of antiretroviral therapy (NIAID, 2004). HIV testing was started in Vietnam in 1988 and the first case was reported in 1990. There were no reported cases the following year, but 11 cases were found in Southern Vietnam in 1992. In 1993 there was an
AIDS and 18 of these died (Nguyen and Wolffers, 1994). We might therefore conclude that CRF01_AE was introduced into Southern Vietnam more than a decade before 1993, in good agreement with our evolutionary analysis results (Fig. 3). Similarly, in Thailand, we would expect CRF01_AE to be present for 10 or more years before it was first detected in the year 1989 (McCutchan et al., 1992; Ou et al., 1992). Furthermore, the estimated dates of divergence of clusters 2 and 3 (Table 2; Fig. 2) also correspond with previously published reports (Cheng et al., 1994; Menu et al., 1996; Nerurkar et al., 1996; Piyasirisilp et al., 2000).

The epidemic history of HIV-1 we report here constitutes a series of bottleneck or founder events. There appear to be surprisingly few “successful” migration events, compared to the number of times that we might expect the virus to move from one place to the next. A similar phenomenon has been observed in the global migration of subtype B, from central Africa to the United States, via Haiti (Gilbert et al., 2007) and in the overland spread of CRF07_BC and CRF08_BC in East Asia (Tee et al., 2008a, 2008b).

Our results provide molecular epidemiological evidence that CRF01_AE was introduced into Vietnam in the early 1980s and transferred from sexual risk populations to IDUs in Southern Vietnam in the late 1980s. The strain subsequently spread in IDUs from Southern to Northern Vietnam (and Guangxi, China) in the early or mid-1990s (Fig. 3).

Materials and methods

Study subjects and specimens

33 whole blood specimens in acid-citrate-dextrose (ACD) solution were collected between April 1997 and June 1998, from HIV-positive individuals in various risk groups in Southern Vietnam (Ho Chi Minh City, An Giang Province; n = 24) and Northern Vietnam (3 northern provinces near Hanoi; n = 9), including 16 IDUs, 8 sexually transmitted disease (STD) patients, 3 heterosexuals and 6 CSW (Table 1). Each specimen was named as follows: following the country code, VN, the two or three subsequent characters denote the sampling sites: Ho Chi Minh (HCM) and An Giang (AG) in Southern Vietnam; Bac Giang (BG), Hai Duong (HD) and Nam Dinh (ND) in Northern Vietnam. Reference nucleotide sequences belonging to CRF01_AE with known sampling dates were retrieved from the Los Alamos HIV Sequence Database (http://www.hiv.lanl.gov/content/index).

PCR amplification and nucleotide sequencing

Near full-length nucleotide sequences of HIV-1 were determined from either provirus DNA from peripheral blood mononuclear cells (PBMCs) (2 specimens) or from plasma virus RNA (31 specimens), as previously described (Brooks et al., 2006; Salminen et al., 1995).

Phylogenetic analysis

Near full-length CRF01_AE nucleotide sequences (HXB2: 790–8795) obtained from Vietnam were aligned with reference sequences using the ClustalX 1.83 program, and further adjusted manually. The recombination analysis of each Vietnamese isolate was performed by SimPlot program using an algorithm of neighbor-joining with a sliding window of 200 nucleotides, overlapping by 50 nucleotides, and a transition-transversion ratio of 2.0, as previously described (Carr et al., 1996).

Reference sequences for subtype A (92UG037), subtype B’ (RL42), subtype B (RF), subtype C (95N21068), subtype D (NDK), CRF01_AE (CM240), subtype F (V850), subtype G (SE6165), subtype H (V1991), subtype J (SE7022) and K (MP535) were used in the Simplot analysis and subtype B’ (RL42), CRF01_AE (CM240) and subtype J (SE7022) were used in the BootScanning analysis. A posterior distribution of phylogenies was obtained using a Bayesian Markov chain Monte Carlo (MCMC) approach, as implemented in BEAST v1.4 (Drummond and Rambaut, 2007).

Divergence time estimation

Investigation of the evolutionary history of the CRF01_AE strains was carried out using BEAST v1.4 (Drummond and Rambaut, 2007), in order to estimate the date of the most recent common ancestor of each phylogenetic cluster (Fig. 1A) (Drummond et al., 2002; Pybus et al., 2003). Dates were estimated using Bayesian MCMC inference under both the GTR and HKY nucleotide substitution models, with a gamma-distribution model of among site rate heterogeneity (with four rate categories) (Hasegawa et al., 1985; Rodriguez et al., 1990; Yang, 1994). Divergence times were estimated using two different molecular clock models: a strict clock and an uncorrelated lognormal relaxed clock (Drummond et al., 2006). Coalescent population growths were estimated using constant size model and using the Bayesian skyline plot model. The analysis was computed for 10 million states sampled every 10,000 states. The MCMC output was tested for convergence and effective sample size using Tracer v1.4 (available from http://beast.bio.ed.ac.uk). The evolutionary rates were estimated from the same CRF01_AE dataset. The rates of evolution were then incorporated as a prior probability distribution in the analysis of these CRF01_AE sequences (Tee et al., 2008b).

Nucleotide sequence accession numbers

The GenBank accession numbers for the 33 nucleotide sequences obtained here are FJ185228 to FJ185260.

Conflict of interest

No conflict.

Acknowledgments

The study was supported by the Ministry of Health, Labour and Welfare, the Ministry of Education, Science and Technology, and in part by the Japanese Foundation for AIDS Prevention (JFAP). OGP and YT are the recipients of Royal Society International Joint Project Grant. HL, KKT and RU are the recipients of Research Resident Fellowship from JFAP and SH is the recipient of Research Resident Fellowship from the Human Sciences Foundation. We thank Hoang Thuy Long and Naoki Yamamoto for support and the patients, the staffs in National Institute of Hygiene and Epidemiology, Hanoi and the regional public health personnel who helped and cooperated for this project.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at [http://dx.doi.org/10.1016/j.virol.2009.05.023].

References


UNAIDS/WHO (2008). Epidemiological Fact Sheet on HIV and AIDS.

