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Abstract

Motivation: Inferring the rates of change of a population from a reconstructed phylogeny of genet-

ic sequences is a central problem in macro-evolutionary biology, epidemiology and many other

disciplines. A popular solution involves estimating the parameters of a birth-death process (BDP),

which links the shape of the phylogeny to its birth and death rates. Modern BDP estimators rely on

random Markov chain Monte Carlo (MCMC) sampling to infer these rates. Such methods, while

powerful and scalable, cannot be guaranteed to converge, leading to results that may be hard to

replicate or difficult to validate.

Results: We present a conceptually and computationally different parametric BDP inference ap-

proach using flexible and easy to implement Snyder filter (SF) algorithms. This method is deter-

ministic so its results are provable, guaranteed and reproducible. We validate the SF on constant

rate BDPs and find that it solves BDP likelihoods known to produce robust estimates. We then

examine more complex BDPs with time-varying rates. Our estimates compare well with a recently

developed parametric MCMC inference method. Lastly, we perform model selection on an empiric-

al Agamid species phylogeny, obtaining results consistent with the literature. The SF makes no

approximations, beyond those required for parameter quantization and numerical integration and

directly computes the posterior distribution of model parameters. It is a promising alternative infer-

ence algorithm that may serve either as a standalone Bayesian estimator or as a useful diagnostic

reference for validating more involved MCMC strategies.

Availability and implementation: The Snyder filter is implemented in Matlab and the time-varying

BDP models are simulated in R. The source code and data are freely available at https://github.com/

kpzoo/snyder-birth-death-code.

Contact: kris.parag@zoo.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A common problem in biology involves inferring the rates of change

of a population from an observed set of gene sequences, sampled

from that population. Here the ‘population’ is composed of any set

of members we are interested in, such as individual organisms or

species and the rates of change control its fluctuations. Usually a

phylogeny (tree) that contains information about the population is

constructed from the sampled sequences. Statistical techniques are

then applied to this tree in order to infer the underlying (and unob-

servable) rates of change.

The size of the biological population of interest can be described

by the number, l(t), of its constituent members at time t � 0. This

count increments or decrements due to the random timings of birth

(speciation) and death (extinction) events. We will refer to the mem-

bers of our population as lineages (or taxa). If lineage births or

deaths occur independently of one another, and only a single event
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is allowed at any time, then the population can be modelled as a

continuous-time birth-death process (BDP) (Gernhard, 2008). The

BDP leads to a rooted binary tree containing both extinct (dead) and

extant (living) lineages. Extinct lineages cannot usually be observed,

so an associated tree, called the reconstructed birth-death process

(rBDP) is often defined (Nee et al., 1994). The rBDP models the ob-

servable phylogeny (i.e. the tree reconstructed from the genetic

sequences) at some observation time T>0, as a pruning of the full

BDP tree, such that only lineages with descendants at T remain. We

use F tð Þ to count the number of lineages in the rBDP at time t.

Harvey et al. (1994) showed that although the rBDP excludes extinct

lineages, it still contains information about the lineage birth and death

rates of the full BDP tree. Thus a link between the unobserved rates of

population size change and the observed genealogy is derived.

Estimating the birth and death rates, which govern l(t), from the

rBDP (F tð Þ) is an important problem in several disciplines, including

macro-evolution, ecology and phylodynamics (Pyron and Burbrink,

2013). Solutions to this problem for BDPs with time-varying or

density dependent rates, incomplete sampling schemes and multi-

type behaviours have led to many biological insights, ranging from

understanding the diversification behaviour in the animal kingdom

to the space-time dynamics of viral epidemics (Hohna et al., 2011;

Hohna, 2015; Kuhnert et al., 2016; Morlon et al., 2011; Stadler,

2009; Stadler et al., 2013).

However, the information lost in going from a true BDP to the

observed rBDP leads to several difficulties. Many combinations of

birth and death rates can produce the same rBDP, which can obfus-

cate estimation of the true diversification process (Kubo and Iwasa,

1995; Pyron and Burbrink, 2013). Moreover, several standard infer-

ence methods struggle to infer non-zero death rates from certain em-

pirical datasets despite the existence of known extinction events

(Pyron and Burbrink, 2013; Purvis, 2008). This is often attributed to

improper or overly assumptive modelling choices, which the data

may then violate (Morlon, 2014). An ongoing and related issue is

deciding whether a BDP or another phylogenetic model, such as the

coalescent (Kingman, 1982), better describes an observed tree

(Stadler et al., 2015; Volz and Frost, 2014). BDP inference therefore

remains an important and active field of research.

We focus on inference for BDPs with time-varying per

lineage birth and death rates, respectively denoted k tð Þ and l tð Þ.
Biologically, such temporal variance may represent how external

influences, such as changes in the abiotic or biotic environment, im-

pact a population (Morlon, 2014). To this problem we apply a para-

metric Bayesian statistical algorithm from control and electrical

engineering, which we term the Snyder filter (SF) (Snyder, 1972).

We use the SF to infer k tð Þ and l tð Þ given a reconstructed phylogeny,

which we assume to be observed without error. We have previously

shown how the SF can be adapted to estimate coalescent processes

(Parag and Pybus, 2017). Here, we extend that work to the more

complex time-varying BDP inference problem.

Several methods exist for inferring time-varying BDP rates from

rBDPs. Nee et al. (1994) initiated this investigation by deriving (but

not optimizing) an appropriate likelihood function. Since then, sev-

eral explicit likelihood approaches based on different joint probabil-

ity density constructions, conditioning criteria and emphases on

maximum likelihood versus Bayesian viewpoints, have dominated

the field (Hohna, 2015; Morlon, 2014). Morlon (2014) gives an

overview of these methods. The most powerful among these techni-

ques tend to use Markov chain Monte Carlo (MCMC) sampling.

This allows one to accommodate complex BDP dynamics or include

features such as incomplete sampling and genealogical uncertainty.

However, due to the stochastic nature of MCMC, these benefits

come at the expense of analytic tractability and methodological de-

terminacy (Morlon et al., 2011; Stadler et al., 2013). With no guar-

antee of convergence (Cowles and Carlin, 1996), it can sometimes

be difficult, or time consuming, to assess or debug the performance

of these MCMC samplers (Mossel and Vigoda, 2006).

Non-likelihood based methods typically utilize summary statis-

tics, or analyse lineage through time plots (LTTs) (Morlon, 2014;

Paradis, 2011; Pybus and Harvey, 2000). LTTs are plots of F tð Þ
against t. Such methods do not make use of all the information in

the rBDP. They, however, remain popular because they are easy to

use, deterministic and usually interpretable. The SF algorithm that

we introduce here melds some of the desirable properties of both

MCMC and non-likelihood based approaches.

The SF directly computes the joint posterior distribution of a

parametric BDP by exploiting the Poisson process nature of the in-

ference problem. It achieves, over a defined parametric grid, prov-

able minimum mean square error (MMSE) estimates by simply

solving an appropriate set of coupled linear ordinary differential

equations (Snyder, 1972). It is wholly deterministic and makes use

of all the BDP information without having convergence issues.

While we do not yet account for genealogical uncertainty, or non-

uniform sampling, we do show how the SF has the potential to ac-

commodate these features in the future.

We envision two potential applications for the SF. First, given its

provable and MMSE nature, it can serve as a standalone Bayesian

algorithm for learning about a phylogenetic dataset in a phenom-

enological manner. For example, it can be used to quickly estimate

and evaluate competing parametric models. Second, its deterministic

and reproducible posteriors make it a good diagnostic tool for

validating MCMC methods, especially when their outputs appear

implausible or vary among runs. This will become particularly valu-

able when complexities like genealogical uncertainty are included,

as (i) convergence time increases exponentially and (ii) misleading or

overconfident posteriors may result (Cowles and Carlin, 1996;

Mossel and Vigoda, 2006; Yang and Zhu, 2018).

We define and adapt the SF for BDP inference problems in

Methods. In Results, we apply the SF to constant rate BDPs and re-

cover known trends. We also compare the implicit SF likelihood

with seven others from the literature. We then consider BDPs with

time-varying birth and death rates, and validate the SF against a re-

cent MCMC method (Hohna et al., 2011), on data simulated from

two illustrative models. We also perform model selection on empir-

ical data (an Agamid phylogeny) and obtain results consistent with

its original analysis (Rabosky and Lovette, 2008b).

2 Materials and methods

2.1 Optimal Snyder filtering
A doubly stochastic Poisson process (DSPP) is a Poisson process that

has a stochastic rate of producing events. Let F tð Þ denote an

observed DSPP at time t � 0 and let ~x tð Þ be a hidden vector state

process that controls its stochastic rate. F tð Þ is then a non-

decreasing integer valued process that counts the number of events

at t. It has instantaneous intensity, b t; ~x tð Þð Þ, on the space of non-

negative real numbers. We want to infer the state process

~x tð Þ (Section 2.2 will show how ~x tð Þ encodes the parameters of a

BDP) given past observations of the DSPP. We use F t ¼ fF sð Þ : 0

� s � tg to denote all past observations up to t. Snyder (1972)

derived a filter that optimally inferred ~x tð Þ (with respect to mean

squared error), given F t and priors on ~x tð Þ. We call this the SF. It is

an exact, Bayesian inference method that generates the informed
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posterior, ~q tð Þ ¼ P ~x tð Þ j F tð Þ, by solving a set of non-linear differen-

tial equations on the probability distribution of ~x tð Þ, sequentially

with time over F t. It is ‘exact’ because it computes the inferred joint

posterior directly, without approximating either the observation

process, F t, or the hidden process, ~x tð Þ. The only approximations in

the SF are inherited from the standard inaccuracies in numerically

integrating differential equations, and in representing distributions

discretely. For some problems the SF is analytically solvable, in

which case there are no approximations.

The SF is general and applies to any hidden Markov state process

that has dynamics describable by: d~x ¼ ~f ~xð Þ dt þ~g ~xð Þd~X . Here, ~X
is a martingale with independent increments and ~f ; ~g are arbitrary

vector functions of choice (see Snyder and Miller, 1991 for details).

The filter is also valid for DSPPs with intensities that additionally

depend on the observed events, b t; ~x tð Þ; F tð Þ. Such DSPPs are called

self-exciting (Snyder and Miller, 1991). We focus on inference prob-

lems with ~f ¼ 0 and ~g ¼ 0, which means our hidden state process is

simply a vector of random variables ~x. We also restrict the type of

self-exciting rate dependence to be Markovian (0-memory). This

DSPP intensity is then b t; ~x; F tð Þð Þ instead of b t; ~x tð Þ; F tð Þ. These

stipulations mean that the SF framework is applicable to the dynam-

ics presented by BDPs with constant but unknown parameters.

Under these conditions the SF can be transformed into a set of linear

differential equations on an un-normalized distribution q� tð Þ, which

is then normalized to ~q tð Þ (Rudemo, 1972).

The resulting SF is described by Equations (1–3) (Rudemo, 1972;

Snyder and Miller, 1991). The rate matrix, KF tð Þ, is diagonal with

entries for every value of b t; ~x; F tð Þð Þ at any given t due to the pos-

sible values of ~x and F tð Þ. Let an arbitrary value of ~x be � and

denote its normalized and un-normalized probabilities as ~q t; �ð Þ
and q� t; �ð Þ. The complete posterior distribution is then ~q tð Þ while

~q t; �ð Þ is the single value when ~x ¼ �. Assume that we have

observed the set of events produced by F tð Þ over 0 � t � T. If the

first event is at t ¼ s1 then s�1 and sþ1 are infinitesimally before and

after that event. The initial condition for the differential equations

is the prior: ~q 0ð Þ ¼ P ~xð Þ. Equations (1–3) which describe the dy-

namics of ~q tð Þ until sþ1 , form the core of the SF algorithm. Note

that the integrals enumerate every possible value of ~x.

dq� tð Þ
dt

¼ �q� tð ÞKF tð Þ; for 0 � t � s�1 (1)

~q tð Þ ¼ q� tð Þ
ð

q� t; �ð Þ d�
� ��1

; for 0 � t � s�1 (2)

~q sþ1
� �

¼ ~q s�1
� �

KF s�
1ð Þ

ð
~q s�1 ; �
� �

b t; �; F s�1
� �� �

d�

� ��1

(3)

From 0 to s�1 , un-normalized state probabilities undergo a continu-

ous exponential decay (Equation (1)), before being normalized

(Equation (2)). At s�1 an event is observed and the posterior is dis-

continuously updated (Equation (3)). The resulting ~q sþ1
� �

is then

used as a new initial condition and the equations solved again until

the next event (over the period sþ1 � t � s�2 ). This repeats until we

obtain ~q Tð Þ ¼ P ~x tð Þ j FTð Þ. This joint posterior uses all of the

observed data FT and yields the MMSE estimator (also known as

the conditional mean) of any function of the parameters, f ~xð Þ. This

is defined as bf ~xð Þ :¼ E f ~xð Þ j FT½ � ¼
Ð
~q T; �ð Þf �ð Þ d� with the MMSE

as E½ðf � bf Þ2� (Snyder and Miller, 1991).

In the following section, we will show how parameter estimation

from an observed rBDP fits within this self-exciting SF framework.

More information on the SF algorithm and some of its biological

applications can be found in (Bobrowski et al., 2009; Parag and

Vinnicombe, 2017; Parag and Pybus, 2017; Snyder, 1972).

2.2 BDP inference
We consider a BDP with per lineage time-varying birth and

death rates, k tð Þ and l tð Þ and let n describe the number of extant

lineages at observation time T. The full BDP and associated

observed rBDP lineage counts satisfy the boundary conditions

l 0ð Þ; l Tð Þð Þ ¼ F 0ð Þ; F Tð Þð Þ ¼ 1; nð Þ. Note that F tð Þ � l tð Þ since

F tð Þ is a pruned version of l(t). If we denote the time of the kth

birth event in the rBDP as ck for 1 � k � n� 1, then the observed

process F tð Þ ¼ 1þ
Pn�1

k¼1 I t � ckð Þ. I is an indicator function that is

1 when its argument is true and 0 otherwise. We define the total di-

versification rate as a t; sð Þ :¼
Ð s
t k uð Þ � l uð Þ du, and the probability

that a single lineage at time t survives until T, P t; Tð Þ, as in

Equation (4), from Kendall (1948).

P t; Tð Þ :¼ 1þ
ðT

t

l sð Þe�a t;sð Þ ds

� ��1

(4)

The rBDP can be described as a generalized pure birth process

(Kendall, 1948) with total birth or lineage growth rate, b tð Þ, defined

in Equations 5 and 6, from Nee et al. (1994). This rate contains in-

formation about the unobservable death events since P t; Tð Þ
depends on l tð Þ. Note that when l tð Þ ¼ 0 over 0 � t � T then P

t; Tð Þ ¼ 1 and b tð Þ ¼ k tð ÞF tð Þ ¼ k tð Þl tð Þ, thereby illustrating how

deaths lead to information losses.

b tð Þ :¼ lim
Dt!0

1

Dt
P F t þ Dtð Þ � F tð Þ � 1 j F tð Þð Þ (5)

b tð Þ ¼ k tð ÞP t; Tð ÞF tð Þ (6)

When considered from this perspective, the rBDP becomes amenable

to SF inference. This follows because the counting statistics of a self-

exciting DSPP with 0-memory are identical to those of a pure birth

process with a population dependent birth rate (Snyder and Miller,

1991).

We assume that the BDP can be described with p parameters

and define the parameter set as a vector ~x ¼ x1; x2; . . . xp

� �
. This

set is partitioned so that the birth and death rates are parametrized

as k t; ~xkð Þ and l t; ~xl
� �

. Note that ~xk and ~xl may have common

parameters but together they must span all of ~x. We will usually just

write k tð Þ and l tð Þ as shorthand. This formulation means that k tð ÞP
t; Tð Þ from Equation (6) is simply a function of ~x and t. The rBDP

rate can therefore be expressed as b t; ~x; F tð Þð Þ. As a result we can

use the SF (Section 2.1) to solve the time-varying BDP inference

problem and obtain P ~x j FTð Þ. Note that we have assumed isochron-

ous and complete sampling, so that all n taxa or lineages observable

in the rBDP are sampled at T with probability 1. Incomplete isoch-

ronous sampling would involve sampling each extant lineage with

probability � < 1. Although we do not implement incomplete sam-

pling here, in Supplementary Material S1 we show how it can be

incorporated within the SF framework for any time-varying BDP

model.

We now explain the numerical implementation of the SF algo-

rithm. Let the vector, ~x, of p random variables (parameters) to be

estimated be such that the distribution of the ith random variable

can be described on a domain of mi points. The parameter vector is

then on a joint Cartesian grid of m ¼
Qp

i¼1 mi possible values, so

there are m possible vectors describing ~x. We denote some arbitrary

vector from this m-set as �. The SF solves a differential equation for
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the joint probability mass across all �. Consequently, the filter has di-

mension m and the prior P ~xð Þ and posterior ~q tð Þ ¼ P ~x j F tð Þ have m

elements. The rate matrix, KF tð Þ is then a diagonal matrix with m

entries at each time t given by enumerating b t; ~x; F tð Þð Þ over possible

�. The continuous differential equations of Equation (1) are sequentially

integrated along the inter-branch intervals of the rBDP and then nor-

malized so that probabilities sum to 1. Discontinuous updates

are applied every time we hit a branching time (at which

F cþk
� �

¼ F c�k
� �

þ 1) according to Equation (3). All integrals are across

the elements of the relevant vectors or matrices. This process is repeated

until we reach the tip of the tree at T. Pseudo-code describing this imple-

mentation of the SF algorithm is given in Supplementary Material S2.

Further information on the numerical implementation, accuracy and

complexity of the SF can be found in Parag and Pybus (2017).

3 Results

3.1 Constant rate birth-death estimation
We apply the SF to the constant rate BDP, which is a special case

of the time-varying model. The parameters to be estimated are

x1; x2ð Þ ¼ k; lð Þ or equivalently r ¼ k� l; q ¼ l
k

� �
with k � l > 0

(Stadler, 2009). For this model, P t; Tð Þ can be explicitly written as
k�l

k�le� k�lð Þ T�tð Þ. We can then parametrize b tð Þ in terms of r and q as in

Equation (7).

b tð Þ ¼ rF tð Þ 1� qe�r T�sð Þ
� ��1

(7)

In Supplementary Material S1, we note that solutions to this

problem are also applicable when sampling is incomplete and

isochronous.

We simulate constant rate rBDPs with n extant lineages

under known parameters, using the algorithms of Hartmann et al.

(2010) and Stadler (2009). We reparametrize the inverse distribu-

tions from these algorithms to obtain the branching times ck for

1 � k � n� 1, with cn�1 ¼ T. Working forwards through time,

we numerically integrate the SF (Equations (1–3)) over these rBDPs

using b tð Þ from Equation (7). We use the r; qð Þ parametrization,

since it allows easier prior definitions and then convert our results to

the k; lð Þ form. We obtain conditional mean estimates of these

parameters over 104 replicate simulated trees. The results of two

sets of simulations are shown in Figure 1, together with the percent-

age relative MMSE, defined as 100 1� bxi

xi

� �2

for parameter xi. The

SF estimates cover all the true values well. In general l is more diffi-

cult to infer (it has a higher MMSE) and accuracy improves with

reduced l. We also observe a bias towards underestimating l when

it is high.

These findings confirm known trends (Nee, 2001; Paradis,

2004). In Supplementary Material S3, we further validate the SF per-

formance by comparison with an alternative parametric least

squares optimization method from Paradis (2011). These results

also suggest that the Yule model, which is a constant rate BDP with

l¼0, should exhibit the lowest MMSE within this class of BDPs. In

Supplementary Material S4, we solve the SF equations analytically

for the Yule model and characterize its optimal estimator. We also

comment on the similarity of this solution to that of another popular

phylogenetic model, the Kingman (1982) coalescent.

3.2 The SF likelihood
Stadler (2013) noted that, in the literature, BDP inference problems

have been solved under seven distinct likelihood functions. These

arise from different assumptions about the rBDP and correspond to

conditioning on (1) a specific tree starting time, (2) survival of at

least 1 starting lineage to T, (3) survival of exactly n lineages to T,

(4) a specific most recent common ancestor (MRCA) time, (5) sur-

vival of both lineages sub-tending from the MRCA to T, (6) survival

of exactly n lineages to T for a specific MRCA time and (7) survival

of n lineages to T given a prior distribution on the tree starting time.

Failing to properly account for the differences in these likelihoods

can affect the accuracy, bias and comparability of BDP estimates,

even for the simplest constant rate BDP. This is especially important

when analysing empirical trees, as it may not always be clear if a

chosen BDP inference scheme matches the conditions under which

the data were obtained. We examine what conditioning assumptions

the SF makes by comparing its implicit likelihood to the seven in

Stadler (2013).

If F tð Þ is a standard inhomogeneous Poisson process then the SF

can be analytically shown to solve the log-likelihood function: H �ð Þ
¼ �

Ð T
0 b s; �ð Þ dsþ

Pn�1
k¼1 log b ck; �ð Þ (Snyder and Miller, 1991).

Here � is an arbitrary value of ~x. Our BDP problem is self-exciting

in addition to being inhomogeneous. We therefore modify H �ð Þ to

account for the extra dependence b tð Þ has on FT . If ck is the kth

observed rBDP event time, then the rBDP is inhomogeneous between

consecutive ck values. We can therefore disaggregate the likelihood

into interval sums with self-exciting birth rate b s; �; kð Þ for times

s : k � F sð Þ < kþ 1. This delimits the kth birth period and leads to

Equation (8) with c0 :¼ 0. This decomposition reflects the piecewise

continuous nature of the SF equations from Section 2.1.

H �ð Þ ¼
Xn�1

k¼1

�
ðck

ck�1

b s; �; kð Þ dsþ log b ck; �; kð Þ
� �

(8)

The constant rate BDP admits a closed form for the integral in

Equation (8). See Supplementary Material S5 for a generalized form

of this solution.

Fig. 1. Estimation of the constant rate BDP model. Constant rate BDPs at a

high and low ðk; lÞ rate pair (vertical dashed lines) are estimated using a SF

with grid dimension mi¼100. A total of 104 independent, n¼ 200 tip, replicate

trees were generated under each pair. The histograms show the conditional

mean rate SF estimates across the replicate trees. The top sub-figures are for

a high death rate setting (priors between ½0:01; 0:99� for q and ½0:01; 100� for

r) and the bottom ones at a low setting (priors between ½0:01; 0:1� for q and

½0:1; 2� for r). The % MMSE is given as a measure of accuracy
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We examine a fine grid over the r; qð Þ parametrization of the

constant rate BDP, with m1 ¼ m2 ¼ g ¼ 150 and simulate a single

rBDP tree with parameters at the grid median, 50; 0:5ð Þ. Given this

observed tree, we evaluate log-likelihoods over this grid and margin-

alize for each parameter (we denote these generically as H qð Þ and

H rð Þ). We plot the seven marginal log-likelihoods from Stadler

(2013) in Figure 2 as labelled grey lines (likelihoods (2) and (5) are

in darker grey). Their separation illustrates the notable impact of

different conditioning assumptions on the BDP likelihoods. When

the SF log-likelihood is computed from the start of the tree

(F 0ð Þ ¼ 1), it exactly matches likelihood (2) (circle markers), pro-

vided that the correction �g log n� 1ð Þ! is added. Here, g is a nor-

malization factor that depends on the Snyder grid size. This

correction means that the SF is computing its likelihood on branch-

ing times, since for a given branching time vector, there are n� 1ð Þ!
different (equally likely) oriented trees (Stadler, 2013). If the SF log-

likelihood is computed from the rBDP MRCA, where F c1ð Þ ¼ 2,

then it matches likelihood (5) with the same correction constant

(square markers in Fig. 2).

These results makes sense, as the SF Markov birth rate, b tð Þ,
depends on P t; Tð Þ, a function that encodes survival time (Equation

(4)). Such a survival condition is central to likelihoods (2) and (5).

The equivalence shown here is important as it validates our SF im-

plementation and clarifies how our algorithm relates to others in the

literature. By ensuring that likelihood functions are consistent we

can compare techniques directly. Moreover, Stadler (2013) noted

that different likelihoods can lead to differing estimate biases, and

recommended using likelihoods (2) and (5) due to their robustness

and accuracy. The fact that these are the likelihoods solved by the

SF is reassuring.

3.3 Time varying rate birth-death estimation
We now consider estimating BDPs with deterministically time-

varying per lineage birth and death rates k t; ~xkð Þ and l t; ~xl
� �

.

As mentioned in Section 2.2, the vectors ~xk and ~xl are spanning

sub-sets of the parameter set ~x. Hence each parameter must appear

at least once. Often we will use k tð Þ and l tð Þ for convenience. These

types of models, while not as tractable as the constant rate BDP, are

important for describing complex diversification dynamics, such as

adaptive radiations or mass extinctions (Paradis, 2011). Time vary-

ing BDPs admit no explicit inference solutions (Paradis, 2011), so

we numerically integrate Equations (1–3) across the branch

times of a given phylogeny. In Section 2.2 we observed that this

rBDP is equivalent to a Markov birth process, F tð Þ, with rate

b t; ~x; F tð Þð Þ � k t; ~xkð ÞF tð Þ, given by Equation (6). Equation (9)

shows that the parametric form of this rate is a complex functional

with nested integrals. The rate is Markov since it only depends on

the current rBDP lineage count (Snyder and Miller, 1991).

b t; ~x; F tð Þð Þ ¼ k t; ~xkð ÞF tð Þ

1þ
Ð T
t l s; ~xl
� �

e
Ð s

t
l s;~xlð Þ�k s;~xkð Þds

ds
(9)

The inference problem is to find conditional mean estimates of the

parameters, bxi ¼ E xi j FT½ �. The SF will directly generate the joint

posterior P ~x j FTð Þ and bxi can be obtained by marginalizing and

then integrating the marginalized posterior across its domain.

We investigate two BDP models with time-varying rates. The

first has a constant death rate l tð Þ ¼ x3 and an exponentially

decreasing birth rate k tð Þ ¼ x3 þ x1e�x2t. We call this the speciation-

decay model. It was introduced in Hohna (2014) to describe a speci-

ation rate that initially starts above the extinction rate and then

decays to k tð Þ ¼ l tð Þ. This model and various nested special cases of

it, were used to solve a model selection problem on empirical ant

and snake phylogenies. The second model uses a logistic function

for both the birth and death rate so that: k tð Þ ¼ 1þ e�x1tþx2ð Þ�1 and

l tð Þ ¼ 1þ e�x3tþx4ð Þ�1. This logistic model was used by Paradis

(2011) to capture the monotonically increasing or decreasing diver-

gence rates commonly found in macro-evolution.

We simulated rBDPs from each model using the algorithms of

Hohna (2013), available in the R package TESS (Hohna et al.,

2016). This involved inversely sampling the kth rBDP speciation

time, ck, by solving rk ¼
Ð ck

0 k tð ÞP1 t; Tð Þ dt
� � ÐT

0 k tð ÞP1 t; Tð Þ dt
� ��1

with P1 t; Tð Þ ¼ P t; Tð Þ2e�a t;Tð Þ as the probability that a lineage at

time t leaves exactly 1 surviving descendant at T. Note that P t; Tð Þ
(Equation (4)) is the analogous probability for when at least 1 des-

cendant survives to T. Each rk is uniformly distributed in 0; 1½ � and

the tree generated is for n lineages at time T so that F Tð Þ ¼ n.

Where possible, we simulated under the parameter values reported

in Hohna (2014) and Paradis (2011). We then applied the SF to the

simulated trees and compared its estimates to the true parameter val-

ues. We benchmarked its performance by analysing the same simu-

lated trees using a recent adaptive MCMC inference method

(Hohna, 2013; Hohna et al., 2016) that is included in the TESS

package.

We conditioned our rBDP trees to start from the MRCA of the

observed lineages since this is a more practical scenario. We there-

fore start at c1 instead of 0 and F c1ð Þ ¼ 2. For these inference prob-

lems, the MCMC method samples from the likelihood function

given in Equation (10). This is the time-varying form of likelihood

(5) from Stadler (2013) (see Section 3.2).

L ¼ P1 0; Tð Þ2

P 0; Tð Þ2
Yn�1

k¼2

kk ckð ÞP1 ck; Tð Þ (10)

We estimated model parameters from 100 replicate simulated

rBDP trees with n¼100 tips, using both the SF and MCMC meth-

ods. To keep comparisons fair we used the same uniform priors and

parameter ranges for both methods. For the SF we set probability 1
mi

Fig. 2. Comparison of constant rate BDP marginal log-likelihood functions.

The seven likelihoods given in Stadler (2013) and the SF likelihoods of

Equation (8) are examined over a grid with m1 ¼m2 ¼ 150 points over 0:01

� q � 0:99 and 0:01 � r � 100. The true parameter values used to simulate

the tree are shown as vertical dashed lines. The seven likelihoods are the

labelled light grey lines with (2) and (5) in dark grey. All curves are based on

the same tree with appropriate adjustments to ensure comparability. The

Snyder likelihoods conditioning on the survival of the tree from either its start

(time 0) or MRCA (time c1) are denoted by circle and square markers,

respectively
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across the ith parameter grid, with mi ¼ 20; 15½ � respectively for the

speciation-decay and logistic models. We checked MCMC conver-

gence using the Geweke statistic (Cowles and Carlin, 1996) and by

examining the auto-correlation function of the MCMC samples.

Figure 3 shows the resulting overall marginal posteriors from both

methods, obtained by combining the estimated marginal posteriors

across all replicate trees. The discrepancy between the estimates arises

from the different parameter discretizations, used implicitly in

MCMC and explicitly in the SF. We confirmed this by observing that,

within numerical tolerances, the likelihoods from Equations (8) and

(10) are identical. Importantly, both methods give very similar mar-

ginal distributions and the true parameter values are within the cover-

age of the posteriors, thus confirming the performance of the SF.

3.4 Birth-death estimation with empirical data
As the SF is flexible and easily implemented it should be useful for

model selection problems. To show this, we analyse the Australian

Agamid lizard dataset from Harmon et al. (2003), which is

known to be almost completely sampled (93%) at the species level.

Previous work by Rabosky and Lovette (2008b) tested four nested

BDP models: (i) constant birth-death, const: k tð Þ ¼ x1; l tð Þ ¼ x2;

(ii) time-varying speciation, spvar: k tð Þ ¼ x1e�x2t; l tð Þ ¼ x3;

(iii) time-varying extinction, exvar: k tð Þ ¼ x1; l tð Þ ¼ x3 1� e�x2tð Þ
and (iv) time-varying birth and death, bothvar:

k tð Þ ¼ x1e�x2t; l tð Þ ¼ x4 1� e�x3tð Þ. Rabosky and Lovette (2008b)

found that the data were best described by the spvar model, thereby

supporting a hypothesis of declining diversification. We apply the SF

to these four parametric models. Our observable input data are the

time scaled Agamid tree given in Supplementary Material S6.

We performed model selection under both the SF and the

Rabosky and Lovette (2008b) approaches by using the least squares

technique developed by Paradis (2011). This method (i) converts the

tree into an empirical cumulative distribution function (CDF), (ef-

fectively a scaled LTT plot), Fe tð Þ, (ii) computes the theoretically

expected CDF for any given value of the parameter vector, ~x ¼ �, as

F t; �ð Þ ¼
Ð t
0 k sð Þea 0;sð ÞP s; Tð Þ2 ds

� � Ð T
0 k sð Þea 0;sð ÞP s; Tð Þ2 ds

� ��1
and

then (iii) assesses the accuracy of a model with parameters � by the

square error metric
ÐT
0 Fe tð Þ � F t; �ð Þð Þ2 dt. We calculated this metric

for each model, with � as its vector of parameter estimates and then

normalized by the maximum model square error. The results of this

procedure are shown in the table in Figure 4. Here, smaller values

indicate better fits and p is the model dimension. The ‘Rabosky’ val-

ues are obtained by computing the maximum likelihood estimates

(MLEs) from Rabosky and Lovette (2008b), using the R package

LASER (Rabosky, 2006) and then applying the Paradis (2011) met-

ric. The ‘Snyder’ values are similarly computed using a SF with uni-

form priors of 1
mi

on each parameter for every model.

The relative fit shown in this table is consistent between both in-

ference methods, recommends spvar as the best model and matches

the results reported in the original Rabosky and Lovette (2008b)

analysis. The expected CDF, F t; �ð Þ, generated by the SF for each

(a)

(b)

Fig. 3. Estimated marginal posteriors for the parameters of time-varying BDP

models. We simulated 100 trees with n¼100 tips and then estimated the

underlying parameters of the model using the SF and MCMC methods.

Results for the speciation-decay and logistic models are in (a) and (b), re-

spectively. We used uniform priors over m ¼ 203 points spanning ½0:1; 0:4;

0:1� to ½5; 20; 5� for parameters in (a) and over m ¼ 154 points within ½0:02; 0:1

; 0:03; 0:2� to ½1; 5; 1:5; 10� for those in (b). We applied a normal smoothing

kernel to the resulting estimates. The MCMC posteriors are in light grey and the

SF ones in darker grey. The true parameter values are vertical dashed lines

Fig. 4. Model selection for the Agamid phylogeny (n¼69). The SF and

the Rabosky and Lovette (2008b) methods were applied to the const, spvar,

exvar and bothvar BDP models. Grids with mi¼ 30 were used for all models ex-

cept bothvar which had mi¼20. SF priors were uniform over the ranges ½ð0; 10Þ
; ð0; 1Þ�; ½ð1; 100Þ; ð1; 25Þ; ð10�3; 0:01Þ�; ½ð0:01; 10Þ; ð0:01; 10Þ; ð10�3; 0:01Þ� and

½ð1; 100Þ; ð1; 25Þ; ð0:01; 1Þ; ð10�3; 0:01Þ�. The table gives the relative fit based on

a normalized Paradis (2011) metric (lower values imply better fits, p is the

model dimension) and supports spvar as the best model. The sub-figures com-

pare the SF marginal posteriors (solid) with the MLEs from Rabosky and

Lovette (2008b) (dashed), for spvar. No comparison is provided for x3 as it is

not well informed by the data
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model, and the empirical Fe tð Þ are provided in Supplementary

Material S6 for further visualization of the relative fits. We used the

Paradis (2011) metric, because it is easy to calculate and naturally

links the estimates of unobserved parameters to the observable LTT.

We also computed the Akaike information criteria for each model,

from both methods. These are given in Supplementary Material S6

and reaffirm our conclusions.

Figure 4 also presents the SF marginal posteriors (solid) and the

MLEs from LASER (dashed) for the best fit spvar model. We find a

close correspondence between these estimates. The posterior for the

death parameter, x3, is not shown because it remained unchanged

from the set prior. This suggests that either the death rate parameter

is redundant or that the Agamid tree contains effectively no informa-

tion about it. Rabosky and Lovette (2008b) also found x3 to be a

spurious parameter, although their MLE, which was just above 0,

could be open to interpretation.

4 Discussion

We have introduced the SF as a new Bayesian algorithm for solving

BDP inference problems, and demonstrated its efficacy on several

BDP models and datasets. As it only depends on linear ordinary dif-

ferential equations, the SF is simple, stable and deterministic.

Provided that we can define parametric functions for the birth and

death rates through time, the SF presents a direct and reproducible

way of computing MMSE estimators.

We initially tested the SF on the constant rate BDP, since its be-

haviour is well understood. The SF not only confirmed known esti-

mation trends, but also performed as well as a previous least squares

optimization method (Supplementary Material S3; Paradis, 2011).

Our method therefore maintains estimator accuracy whilst avoiding

non-linear optimization algorithms that may be susceptible to local

extrema. Under the constant rate BDP, MMSEs fell with l, implying

that the smallest MMSE would be achieved as l! 0. At this limit,

we obtain the Yule model. In Supplementary Material S4, we analyt-

ically solved the SF for this model, deriving this MMSE estimator.

We also found a sampling condition under which constant rate

BDPs with l 6¼ 0 behaved like the Yule model. These results hint at

the potential analytical usefulness of the SF.

At higher death rates, estimation, in addition to being less ac-

curate, becomes more sensitive to rBDP conditioning (Stadler,

2013). This can create biases (not just for constant rate models) if

the conditions under which empirical trees are obtained do not

match those of the likelihood solved by a chosen inference scheme.

Stadler (2013) examined seven distinct rBDP likelihoods and found

that those which condition only on the survival of the tree were the

most robust to mismatches and hence the most useful for study.

We found that the SF solves exactly these likelihoods. The P t; Tð Þ
function in Equation (7) appears to be the source of this implicit

conditioning.

We then extended our analysis to time-varying BDPs. We bench-

marked the SF against a modern MCMC method by Hohna et al.

(2016), on trees simulated under the speciation-decay and logistic mod-

els given in Hohna (2014) and Paradis (2011), respectively. Both infer-

ence methods gave comparable marginal posteriors. This comparison

highlighted a relative advantage of our algorithm. The MCMC method

sometimes required multiple runs to avoid poor convergence and could

give different results among runs on the same data. Result reproducibil-

ity is not guaranteed in MCMC techniques and often non-trivial indices

need to be calculated to evaluate convergence (Cowles and Carlin,

1996). In contrast, the SF will always produce the same posteriors for

the same observed phylogeny and parameter grid. The SF posteriors can

therefore serve as useful references for debugging or validating MCMC

and other randomized inference strategies. We present an example of

this application for MCMC runs under the speciation-decay model, in

Supplementary Material S7.

In terms of computational speed, we found, for the models we inves-

tigated, that our non-optimized Matlab implementation of the SF com-

pletes in a shorter time than the MCMC technique of Hohna et al.

(2016). We provide a comparison of execution times for these BDP

models in Supplementary Material S2. MCMC methods could poten-

tially be faster than the SF for higher dimensional parametric models,

due to the grid based nature of the latter. However, in such scenarios

there is always a question about whether non-parametric approaches

are more suitable. A related discussion on SF computational and meth-

odological complexity is given in Parag and Pybus (2017).

We also investigated a model selection problem on an empirical

phylogeny of Agamids, first analysed by Rabosky and Lovette

(2008b). The SF reproduced the relative model fit of Rabosky and

Lovette (2008b), providing evidence for declining diversification and

matched the birth rate parameter MLEs for this dataset. The Rabosky

and Lovette (2008b) MLE for the death rate parameter was approxi-

mately 0, while the SF produced a posterior that matched its prior.

This illustrates the transparency offered by working with complete

distributions instead of point estimates. The SF clearly suggests that

this parameter is redundant, or equivalently, that the data are not in-

formative enough about this parameter. However, in using the

Rabosky and Lovette (2008b) method, we would need to examine the

complete likelihood function to distinguish between the competing

hypotheses of an actual extinction rate of 0, which is unlikely (Purvis,

2008), and insufficient statistical power.

The SF presents a capable alternative BDP inference technique

that, within numerical tolerances, provides exact MMSE estimates

by directly computing the joint parameter posterior. It is simple and

does not suffer from algorithmic stability issues like local minima or

poor convergence. It exploits the Markov birth nature of rBDPs,

which should allow easy extension to more complex BDPs. Our fu-

ture works will generalize the SF to allow for genealogical uncer-

tainty, incomplete sampling and non-linear dependence. To account

for tree uncertainty we could run SFs on a covering set of trees, and

then combine the results in a Bayesian manner. This is similar to

superposing multiple Poisson streams and derives from taking the

Markov birth process approach (Snyder and Miller, 1991).

We have shown in Supplementary Material S1 how to accommo-

date fixed incomplete sampling (also known as uniform taxon sam-

pling) by replacing P t; Tð Þ with P� t; Tð Þ, the probability that a

lineage has at least one descendant at T and is also sampled. As long

as a sampling process admits a description for P� t; Tð Þ then the SF

can be applied. The SF can also handle non-linear BDPs, in which

birth and death rates become non-linear functions of F tð Þ. Here, the

structure of b from Equation (7) becomes more complex because the

birth and death rates generalize to k t; ~xk; F tð Þð Þ and l t; ~xl; F tð Þ
� �

.

The inference problem, however, is the same, as F tð Þ is known (ob-

servable) and the parameter space is unchanged. When the extinc-

tion rate is zero then density dependence, as defined in Rabosky and

Lovette (2008a), falls within this class of models.
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