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Verde (appendix p 10). Thus, genomic, epidemiological, 
mobility, and climatic data support the hypothesis that 
Zika virus was introduced directly to Angola from Brazil.

Serum samples were collected from 76 infants with 
suspected microcephaly between Jan 1, 2017, and 

Nov 31, 2018 (median time of sample collection 24 days 
after birth [IQR 4–85; range 0–315 days]; figure 2; 
appendix p 7). The number of neonates with suspected 
microcephaly peaked around November, 2017, and 
subsequently declined (figure 2B). This peak occurred 
several months after PCR-confirmed cases of acute Zika 
virus infection were detected in Angola (figure 2B). Head 
circumference was not recorded for any of the 14 suspected 
cases of microcephaly that were detected in 2017, but was 
recorded for 53 (85%) of the 62 suspected cases reported 
in 2018. All infants with suspected microcephaly for 
whom head circumference was measured had head 
circumferences that were at least two SDs below expected 
by age according to WHO’s child growth standards 
(appendix p 11), regardless of time of identification after 
birth.  Additional clinical assessments were not typically 
reported. Serum samples were also collected from 
24 mothers.

No samples from infants with suspected microcephaly 
or their mothers were positive for Zika virus infection 
as measured by real-time RT-PCR. Conversely, none of the 
eight infants in whom serological testing was done showed 
evidence of recent infection with other ToRC pathogens. 
Thus, the cause of microcephaly was uncertain.

The girl with microcephaly who was born in Angola but 
presented in Brazil on whom we did extensive 
investigations had a head circumference at birth of 29 cm 
(Z score –3·6) according to her mother. Clinical 
examination suggested severe and disproportionate 
microcephaly. The 21-year-old mother was a long-term 
resident of Moxico province, but travelled to Luanda 
during the second and third months of pregnancy and 
developed a rash during this visit (week 10 of pregnancy; 
January, 2017). Diagnostic surveillance data showed that 
Zika virus was present in Luanda and Bengo province 
when she had this rash (figure 1). The girl with 
microcephaly was born in August, 2017, coincident with 
the increase in neonates with suspected microcephaly 
reported in Angola (figure 2).

CT and MRI, which were done when the child was age 
15 months, confirmed microcephaly via reduced cerebral 
volume, and showed abnormalities consistent with 
congenital Zika syndrome that had been noted in Brazil 
and elsewhere—eg, calcification areas, ventriculomegaly, 
brainstem hypoplasia, dysgenesis of the cerebellum, and 
pachygyria (figure 5).29 At age 15 months, the child had a 
head circumference of 37 cm (Z score –6·3). She was IgG 
negative for both dengue virus and Zika virus by ELISA, 
but weakly positive for Zika virus neutralising antibodies 
according to the specific plaque reduction neutralisation 
test (titre=40). Her mother was strongly IgG positive for 
Zika virus by ELISA, and had a weak dengue virus IgG 
response. A specific plaque reduction neutralisation test 
confirmed the strong neutralising antibody response in 
the mother (titre=1280). These findings strongly suggest 
that the mother had been previously infected with Zika 
virus. Both the mother and child had negative dengue 

Figure �: Factors affecting the likelihood of introduction of Asian lineage Zika virus to Angola
The 11 countries shown are those with the seven highest median passenger numbers and number of cases of Zika 
virus per person. Error bars show the IQRs.
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Figure �: Brain CT and MRI scans of an Angolan child with microcephaly
(A) Compensatory ventriculomegaly and calcification areas in the subcortical region are shown by green arrows. 
In (B) and (C), calcification in the basal ganglia is shown by the green arrows. (D) Brainstem hypoplasia. 
(E) Dysgenesis of the cerebellum. (F) Pachygyria.
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virus neutralising antibody responses by specific plaque 
neutralisation test assay (titre ≤10). The long-term 
outcomes for this child included delayed neurological and 
development status (on the Bayley Scales of Infant and 
Toddler Development) and epileptic spasms—findings 
common in cases of congenital Zika syndrome.

Discussion
In this multi-component outbreak investigation, we 
characterised the first known outbreak of Asian lineage 
Zika virus in continental Africa. Although surveillance, 
genetic, and clinical data were individually scarce, 
together these independent lines of evidence provide a 
cohesive picture of the outbreak of Zika virus infection in 
Angola. We report data for five cases of Zika virus 
infection between December, 2016, and October, 2017, 
and confirmed by real-time RT-PCR. The three Zika virus 
genomes that we sequenced represent the first Asian 
lineage genomes reported from Africa, and the first 
genome isolated from a case with Zika-virus-associated 
microcephaly in Africa. Our phylogenetic analyses 
showed that Zika virus was probably introduced to Angola 
from Brazil and then circulated for 17–28 months. Finally, 
our serological investigations in one mother–child pair 
supported the view that the Zika virus outbreak caused 
microcephaly in Angola.

Phylogenetic analysis showed that the three Angolan 
Zika virus genomes formed a single clade with a common 
ancestor in June, 2016. These findings suggest either a 
single successful introduction that initiated local Zika 
virus transmission in Angola that continued until at least 
June, 2017, or recurrent but later introduction to Angola of 
viruses belonging to a specific lineage present in Brazil. 
The latter explanation is much less likely, because it is 
improbable that three or more independent introductions 
of Zika virus to Angola would belong to only one of the 
many different lineages that circulated contemporaneously 
in Brazil.13 Thus, Zika virus could have circulated in 
Angola for at least 3 months before a case was first 
detected in a returning traveller,11 and for at least 6 months 
before a local case was detected. Similar or longer periods 
of cryptic Zika virus transmission have been reported 
in the Americas13 and attributed partly to difficulties in 
identifying clinical cases when infections are asymp- 
tomatic or mildly symptomatic.15

Zika virus probably circulated in Angola for 
17–28 months—sustained transmission that implies that 
the outbreak was substantially larger than the small 
number of cases detected by surveillance. Low case 
detection has been reported previously (eg, in Cape Verde, 
where less than 3% of the estimated number of infected 
individuals were suspected to have Zika virus infection).7 
Retrospective screening of stored samples could help to 
establish the magnitude and duration of undetected Zika 
virus transmission in Angola since 2015.

Zika virus was probably introduced to Angola from 
Brazil, but we cannot rule out the possibility that it could 

have spread to Angola from affected locations where 
genomic data are unavailable. However, data for human 
flight mobility and the global incidence of Zika virus 
support our phylogenetic conclusion that Brazil is the 
most likely origin of the Angolan outbreak. Transmission 
of mosquito-borne viruses between these two countries 
was previously shown by the spread of chikungunya virus 
from Angola to Brazil in 2014.30 Notably, both African 
countries with confirmed Asian-lineage Zika virus 
(ie, Angola and Cape Verde) have regular air connectivity 
with Brazil,5 which likely reflects the close historical, 
cultural, and linguistic links between these countries. Of 
all African countries, Angola received the largest number 
of travellers from Zika-virus-affected countries in the 
Americas.5 The introduction of Zika virus to Angola 
therefore underscores the need to coordinate viral 
surveillance strategies across countries that share high 
human interconnectivity and similar vector-borne 
transmission potential, irrespective of their distance apart.

The Asian lineage of Zika virus that circulated in 
Angola caused microcephaly in Brazil and elsewhere.31 In 
our study, none of the 76 infants with suspected 
microcephaly whom we tested were positive for Zika 
virus infection by real-time RT-PCR. However, this 
finding does not prove that all these infants did not have 
previous Zika virus infection. Zika viraemia declines to 
undetectable levels in blood within 11 days of symptom 
onset in adults.32 The infant samples tested here were 
collected a median of 24 days after birth, and infection 
could have occurred early during pregnancy. The 
occurrence of several, large dengue virus outbreaks in 
Angola33,34 meant commercial ELISAs could not be used 
to serologically diagnose Zika virus, because these assays 
frequently fail to accurately discriminate between 
previous exposure to dengue virus and to Zika virus.27 The 
cause and clinical severity of the suspected cases of 
microcephaly identified by routine surveillance by the 
Angola Ministry of Health that we report here remain 
unclear.

To date, there have been only two confirmed reports of 
microcephaly in which the mother of the infant lived in 
Angola: one infant who was identified clinically in this 
study, and one who was identified by Sassetti and 
colleagues10 for whom we sequenced the infecting Zika 
virus genome. Both infants had brain abnormalities 
consistent with congenital Zika syndrome. The mother of 
the child identified in our study had a strong Zika-virus-
positive response on the specific plaque neutralisation test 
assay, by contrast with her child, who had only a weakly 
positive response. This result is consistent with 
intrauterine Zika virus exposure because infants typically 
lose maternally acquired IgG antibodies during the 
6–12 months after birth,35 and the child was 15 months old 
when tested. Data for the two confirmed cases therefore 
strongly suggest that Zika virus has caused microcephaly 
in Angola. Both infants were born at approximately the 
same time as the rise in suspected microcephaly cases 
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identified independently by the Angolan Ministry of 
Health.

We present several complementary lines of evidence 
that together form a cohesive insight into the origins 
and effects of Zika virus in Angola. Despite the overall 
concordance of these different data streams, several 
aspects of the study have additional limitations that 
should be considered. First, the proportion of diagnostic 
samples that were positive for Zika virus infection by 
real-time RT-PCR in Angola is probably an underestimate 
of the true numbers of infections. Suboptimum sample 
transport and lack of information about the date of onset 
of symptoms mean that samples could have degraded 
before testing or been collected after viraemia was no 
longer detectable.32 Second, the spatiotemporal dis-
tributions of notified suspected cases of microcephaly 
and Zika virus were very difficult to interpret with 
confidence because the total number of reported cases 
was low, the consistency of case detection and reporting 
were probably highly variable, and the intensity of 
surveillance efforts has changed over time. Gestational 
age was not recorded for any suspected cases of 
microcephaly, and head circumference was not reported 
for some notified cases, and thus the severity of 
microcephaly was difficult to establish. The absence 
of serological testing for Zika virus and other STORCH 
pathogens (ie, syphilis, Toxoplasma gondii, rubella, 
cytomegalovirus, herpes simplex, and others) in infants 
with suspected microcephaly makes the cause of these 
cases difficult to establish. Widespread, routine 
screening of pregnant women for STORCH pathogen 
infections and follow-up of children born with brain 
abnormalities would improve understanding of the 
extent and causes of birth defects in Africa.
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