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1. Introduction

One of the main goals of viral evolutionary genetics is to
understand to what extent natural selection – as opposed to
mutation and random genetic drift – determines the genetic
variability and evolution of viruses. Various methods of gene
sequence analysis have been developed to detect and measure
natural selection, the most popular of which can be categorised as
either dn/ds-based methods (e.g. Nei and Gojobori, 1986) or
methods based on site-frequency summary statistics (e.g. Tajima,
1989; McDonald and Kreitman, 1991a). The former calculate the
ratio of non-synonymous to synonymous genetic changes, which is
typically denoted dn/ds or v. A ratio greater than one indicates the
actionof positive selection,while a ratioof less thanone can indicate
purifying selection. In contrast, summary statistic methods depend
on the frequency at which polymorphisms are found in a sample of
sequences. These statistics may be computed from within-species
polymorphisms (Tajima, 1989) or from both polymorphisms and
among-species fixations (McDonald and Kreitman, 1991a).

Currently, most studies of viral genetic data use phylogenetic
dn/ds methods as a means to detect selection (e.g. Yang, 2007;
Pond and Frost, 2005), which are based on statistical models of

codon evolution (Goldman and Yang, 1994; Yang et al., 2000).
Examples of this approach are too numerous to list here, but one of
themost influential was Nielsen and Yang’s (1998) investigation of
positive selection in the HIV-1 env gene. Phylogenetic dn/ds
methods do not require users to make specific assumptions about
the sampled population and can therefore provide robust evidence
for the directionality of selection. In addition, simulations showdn/
ds methods to have good statistical power under models of both
positive and negative selection (Zhai et al., 2009), although in
practice such methods are likely more powerful in detecting
recurrent or reciprocal selection than single, historical selective
sweeps (Pybus and Shapiro, 2009). However, the interpretation of
dn/ds can be potentially misleading when recombination has been
operating (Wilson and McVean, 2006) and the application of
phylogenetic dn/ds methods to within-population data sets has
recently been criticised (Kryazhimskiy and Plotkin, 2008).
Crucially, phylogenetic dn/ds methods can be time consuming
or impractical to compute on large data sets. Recent developments
in sequencing technology (Margulies et al., 2005) will make
commonplace the publication of data sets containing hundreds or
thousands of complete viral genomes, and therefore it is sensible to
investigate the potential utility of alternative methods.

Site-frequency summary statistics, such as Tajima’s D (Tajima,
1989) have occasionally been used to analyse viral data sets. For
example, Edwards et al. (2006), and Shriner et al. (2004a,b) applied
versionsofTajima’sD toHIV-1andTsompanaetal. (2005)employed
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the test on the Tomato spotted wilt virus. In addition, tests that
considerpatternsofbothpolymorphismanddivergence,notably the
McDonald Kreitman (MK) test, have been applied to the Bovine
immunodeficiency virus (Cooper et al., 1999), beak and feather
disease virus (Ritchie et al., 2003) and North American Powassan
virus (Ebel et al., 2001). Most pertinent to virus evolution, William-
son(2003)demonstratedthat theMKtestcanbeapplied to ‘‘serially-
sampled’’ sequences that are obtained from the same population at
different time points, thereby estimating the rate of viral adaptation
through time. Summary statisticmethods are computationally very
efficient, can potentially be applied to very largewhole genomedata
sets, and perhaps are more robust to the effects of recombination
than phylogenetic dn/ds methods. However, summary statistic
methods typically assume that multiple mutations do not occur at
the same nucleotide site, which may explain why they are rarely
employed on rapidly evolving viral data sets, but commonly applied
to specieswith relatively low evolutionary rates, such as Drosophila
(McDonald and Kreitman, 1991a; Smith and Eyre-Walker, 2002;
Andolfatto, 2005).

In this paper we investigate the utility and performance of two
common summary statistic methods, Tajima’s D statistic (Tajima,
1989) and the MK test (McDonald and Kreitman, 1991a), when
applied to RNA virus sequences.We perform extensive simulations
of virus-like alignments in order to measure the type I error of
these tests (i.e. the chance of falsely rejecting the hypothesis of
neutral evolution). Second, we apply the two tests to a collection
of almost 100 RNA virus alignments that represent natural viral
populations. Third, we develop and implement a new algorithm for
computing the MK test that improves the performance of the test
on data sets containing much genetic variation.

2. Background

2.1. Tajima’s D statistic

The Tajima’s D test is based on two different estimates of u, the
genetic diversity of a sequence alignment: (i) the mean number of
pairwise differences (ûk) and (ii) the scaled number of segregating
sites (ûs), otherwise known as theWatterson estimate (Watterson,
1975). The units of u are substitutions per site. The premise of
Tajima’s D test is that under neutral evolution these two measures
should be equal, hence the difference between them should be
zero. For a neutrally evolving haploid population, u is expected to
equal 2Nem, where Ne is effective population size and m is the rate
of nucleotide substitution. Tajima’s D statistic is defined as:

D ¼ ûk # ûsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asþ bs2

p ; (1)

where ûs ¼ sg , s is the number of segregating sites and a, b and g
are constants that depend on the number and length of the
sequences. The denominator is a normalizing term equal to the
standard error of the numerator. Under neutrality, the mean and
variance of the D statistic should be approximately zero and one,
respectively. Tajima’s D critically depends on the shape of the
genealogy that relates the sampled sequences. For a star-like tree
(long terminal branches and short internal branches), ûk < ûs,
henceD is negative. Thismay occur during population growth or as
a result of a selective sweep, which both generate more low-
frequency polymorphisms than expected under neutrality. If the
tree has long internal and short terminal branches (which may
occur if, for example, there is strong population subdivision) then
ûk > ûs and D is positive, signifying an excess of mid-frequency
polymorphisms. Tajima’s D does not require an outgroup
sequence, that is, the ancestral or derived state of each
polymorphism is not relevant.

2.2. The McDonald–Kreitman test

The McDonald–Kreitman (MK) test compares the pattern of
polymorphism within a group (population or species) to that
between two closely related groups. Under neutrality, the ratio of
the number of replacement polymorphisms (rp) to silent poly-
morphisms (sp) within a group should equal the ratio of the
number of replacement differences (rd) to silent differences (sd)
between groups, such that

r p
sp

¼ rd
sd

: (2)

If an excess of replacement differences between groups is
observed then adaptive fixation and positive selection is inferred
(McDonald and Kreitman, 1991a). The MK test is expected to be
less affected by the shape of the underlying genealogy and should
therefore be more robust to changes in demography (Nielsen,
2001).

The MK test requires that sites in a sequence alignment are
assigned to one of the four categories defined above. Therefore an
additional ‘outgroup’ sequence (or sequences) is needed to
determine which sites are fixed differences (Figs. 1 and 2).
Typically, this outgroup represents a closely related population or
sister species (McDonald and Kreitman, 1991a; Fig. 1b) but for
rapidly evolving viruses sampled at different times, the outgroup
can represent the same population at an earlier time point
(Williamson, 2003; Fig. 1a). The four totals (rp, sp, rd and sd) are

Fig. 1.An illustration of the rationale of theMcDonald–Kreitman test. Sequences are
sampled from the study population (ingroup alignment). In order to identify the
direction of evolutionary change, and outgroup sequence is also obtained. (a)
Outgroup is sampled from the study population at an earlier time point, sensu
Williamson (2003). (b) Outgroup is obtained from a contemporaneous sister
population or sister species, sensu McDonald and Kreitman (1991a). The circles
represent fixed differences between the ingroup and outgroup. The diamonds
represent ingroup polymorphisms.
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summarized in a contingency table and a non-parametric test of
independence, such as the x2-test, can then be used to test for a
statistically significant deviation from neutrality.

3. Methods

3.1. Investigating the performance of Tajima’s D

To explore the reliability and type I error rate of Tajima’s D
statistic, we simulated alignments of neutrally evolving sequences
under various scenarios. Simulation was a two-step process. First,
for each scenario, 500 neutral coalescent trees with 50 taxa were
simulated. Second, one alignment of sequences, 6000 nt in length,
was simulated along each tree.

Neutral coalescent trees were simulated using standard
approaches (e.g. Hudson, 1990) which were implemented in the
Java Evolutionary Biology Library (JEBL; available from http://
sourceforge.net/projects/jebl). Coalescent trees were simulated
under two scenarios, constant population size and exponential
growth. The latter scenario was chosen because many viral
populations of interest undergo a sustained increase in population
size, either during an epidemic or, at a smaller scale, immediately
following transmission to a new host.

For the constant population size scenario, trees were
simulated under 28 logarithmically spaced values of u, ranging

from 0.00001 to 70. For the exponential growth scenario, trees
were simulated under the same u values plus a scaled growth rate
r = 200. [Note that r = r/m, where r is the exponential growth
rate of the population, hence ur = Ner. If ur% 1 then very star-
like trees are generated; see Pybus et al., 1999]. These parameter
ranges were chosen to include the range of values typical for RNA
virus data sets.

A codon-basedMarkov substitutionmodel (Goldman and Yang,
1994) was used to simulate neutrally evolving sequences along the
coalescent trees, as implemented in PAML (Yang, 2007). The
sequences were generated under dn/ds = 1 and with equal rates of
transitions and transversions. One sequence alignment was
generated for every simulated tree, meaning that for each value
of u, 500 alignments of 50 sequences were generated.

Tajima’s D statistic was calculated for each simulated data set
(Tajima, 1989; computer program available on request). Although
Tajima (1989) used the beta distribution to calculate critical values
for the test, Simonsen et al. (1995) argue that this approach leads to
conservative values and a reduction in statistical power. Therefore
we used parametric bootstrapping to obtain a null distribution and
95% critical values for D, as follows: (i) ûs was calculated from the
target data set, (ii) given this ûs value, 1000 constant population
size coalescent trees were simulated using themethods above, (iii)
for each tree generated in step (ii) a sequence alignment was
generated under the infinite sites assumption, following the

Fig. 2. An illustration of the seven ‘‘site types’’ defined in the main text. In each case, the box contains the nucleotide observed in the outgroup sequence. Below this is shown
the site pattern observed in the ingroup alignment.
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method described in Simonsen et al. (1995), (iv) Tajima’s D was
calculated for each alignment generated in step (iii), resulting in a
null distribution of the statistic, (v) the null hypothesis was
rejected if the D value of the target data set fell outside the 95%
critical values obtained in step (vi). The type I error of the test was
then calculated as proportion of the 500 target data sets that
rejected the null hypothesis.

3.2. Investigating the performance of the MK test

As explained above, the MK test needs to discriminate between
polymorphisms and fixed differences and therefore requires an
outgroup sequence, taken from either a closely related species
(Fig. 1b) or an earlier time point (Fig. 1a). We chose to simulate the
latter situation, which can be easily represented using the serial-
sample coalescent model (Rodrigo and Felsenstein, 1999) and also
corresponds to situation investigated by Williamson (2003). Cruci-
ally, the results we obtain are applicable to both situations, because
the MK test depends on the genetic distance between the outgroup
and ingroup, not on their relative positions in time (see Fig. 1).

As before, simulations were undertaken on both constant
population size and exponential growth scenarios. For the former,
two parameters were required to simulate the serial-sample
coalescent trees, u and t = tm, where t is the time elapsed between
the earlier time point and the ingroup (Fig. 1). A range of 13
logarithmically spaced u valueswere chosen, ranging from 0.00001
to 1. For each u value, 500 treeswere simulated under 12 different t
values, ranging from 0.1 to 5. Each tree comprised 50 ingroup
sequences plus one outgroup sequence sampled t time units into
the past. These serial-sample coalescent trees were simulated
using JEBL (see above). For the exponential growth scenario,
phylogenies were simulated under the range of u and t values
described immediately above, with the addition of a scaled
exponential growth rate of r = 200.

As before, a codon-based Markov substitution model (Goldman
and Yang, 1994) was used to simulate neutrally evolving sequences
along the coalescent trees. One sequence alignment (6000nt long)
was generated for every simulated serial-sample tree, meaning that
for each value of u or t, 500 alignments of 51 sequences were
generated. Asbefore, sequenceswere generatedunderdn/ds = 1 and
with equal rates of transitions and transversions.

For each simulated alignment, the total number of sites in each
category (rp, sp, rd and sd) were computed. We developed a new
approach to this computation, explained below, and analysis of
simulated alignments was performed using both the standard
method and our new approach. A x2 test of independence was
applied to the site totals for each of the 500 replicate alignments.
Hence, for each specific combination of u and t, the type I error
equals the proportion of the 500 x2 tests that were significant at
the p = 0.05 level.

3.3. New proportional counting algorithm for the McDonald–
Kreitman test

The MK test requires that the number of sites belonging to
different categories (rp, sp, rd, sd) are computed accurately. When
sequence diversity (u) is low this is straightforward, as themajority
of sites will be either fixed or 1-state polymorphic (Fig. 2), that is,
eachmutation occurs at a different site. Furthermore, variable sites
are unlikely to fall within the same codon hence eachmutation can
be easily categorised as silent or replacement. Therefore a simple
count will suffice when the test is applied to animal genomes (e.g.
McDonald and Kreitman, 1991b; Eyre-Walker, 2006). However, a
more sophisticated approach is needed for viral alignments, which
can be highly diverse. As u increases, there is a greater chance of
observing siteswhich are 2, 3 or 4-state polymorphic (Fig. 2), hence

multiple mutations may occur at the same site or within the same
codon. The categorisation of sites therefore becomes more
ambiguous—not accounting for this ambiguity could potentially
introduce biases into the MK test. To avoid such biases we have
developed a ‘‘proportional’’ counting approach, described below,
that incorporates the ambiguity in site categorisation. A different,
but related, approach was employed by Egea et al. (2008).

For a given ingroup alignment plus outgroup sequence (Fig. 1),
we define seven ‘site types’ that describe all the possible nucleotide
patterns that could occur, illustrated in Fig. 2. Rather than
unambiguously assigning sites as fixed or polymorphic, we give
each site i a ‘‘fixation score’’ Fi and a ‘‘polymorphism score’’
Pi = (1 # Fi). If the site is definitely fixed then Fi = 1 and Pi = 0.
Uncertainty in the status of a site is represented by assigning
values between zero and one, as follows.

& SITE TYPE 1: All ingroup bases identical to the outgroup (invariant
sites). Fi = 0 and Pi = 0.

& SITE TYPE 2: All ingroup bases identical but different from the
outgroup (fixed sites). Fi = 1 and Pi = 0.

& SITE TYPE 3: Ingroup contains two bases, one of which is identical
to the outgroup. Fi = 0 and Pi = 1.

& SITE TYPE 4: Ingroup contains two bases, neither of which is
identical to the outgroup. McDonald and Kreitman (1991a)
would classify this site as polymorphic (i.e. Fi = 0, Pi = 1).
However, as no ancestral base is observed, the most plausible
explanation is that an earlier fixation event has been followed by
another mutation at the same site. Classifying such sites as
polymorphic would under-estimate the number of fixations.
Therefore Fi = 0.5 and Pi = 0.5.

& SITE TYPE 5: Ingroup contains three bases, one of which is
identical to the outgroup. Observing an outgroup base increases
the likelihood that neither of the two polymorphic bases has yet
fixed. Therefore Fi = 0 and Pi = 1.

& SITE TYPE 6: Ingroup contains three bases, none is identical to the
outgroup. As with site type 4, no ancestral bases are observed
hence the most likely scenario is an earlier fixation followed by
furthermutations are the same site. Therefore Fi = 1/3 and Pi = 2/3.

& SITE TYPE 7: Ingroup contains all four bases. No reliable
conclusion can be drawn, so we conservatively assign the site
as Fi = 0 and Pi = 1. If such sites are common then the MK test
should not be applied.

We also developed a proportional approach to evaluating
whether a variable site is silent or replacement. Rather than
unambiguouslyassigning sitesasfixedorpolymorphic,wegiveeach
site i a ‘‘silent score’’ Si and a ‘‘replacement score’’ Ri = (1# Si). For
each site, the silent score is simply the proportion of ingroup bases
that, if hypothetically inserted into the outgroup sequence, would
not change the amino acid coded by the corresponding codon.

For a given alignment, the number of sites in different
categories (rp, sp, rd, sd) are straightforwardly computed from the
proportional site scores as follows:

r p ¼
Xn

i¼1

PiRi; sp ¼
Xn

i¼1

PiSi

rd ¼
Xn

i¼1

FiRi; sd ¼
Xn

i¼1

FiSi

(3)

This algorithm was implemented in a Java computer program
(available on request).

3.4. Comparative analysis of RNA virus data sets

To investigate the performance of Tajima’sD and theMK test on
viral sequences, we utilized a previously published and curated
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collection of alignments from !100 different RNA virus species
(see Shapiro et al., 2006; Pybus et al., 2007 for details). The
alignments represent partial or complete structural gene
sequences and should well represent the behaviour and diversity
of RNA virus data sets. For each alignment, gene diversity (u) was
calculated using the Watterson estimator (ûs) and Tajima’s D
statistic was calculated as described above. In order to perform the
MK test, it was first necessary to identify an outgroup sequence for
each data set. We chose to use sister-species for outgroups, as
serial-sample outgroups were less common. Sister-species out-
groups were identified as follows: (i) representative sequences
from each species were used as queries in a nBLAST search against
the non-redundant database, resulting in a set of candidate
outgroups; (ii) distance-based phylogenies and the viral taxonomic
literature were used to choose the most closely related candidate
outgroup; (iii) the chosen outgroup was profile-aligned to the
curated alignment using ClustalW2 (Larkin et al., 2007) and
subsequently inspected and edited by hand, paying particular
attention to codon structure. Using this approach, 96 RNA virus
data sets were given a reliable sister-species outgroup and were
subjected to the MK test, as described above. In addition, the mean
pairwise genetic distance between the outgroup and ingroup
sequences was calculated for each data set, using the Jukes–Cantor
method (Jukes and Cantor, 1969).

4. Results

4.1. Investigating the performance of Tajima’s D

Fig. 3 shows the performance of the Tajima’s D test on neutral
sequences simulated under different u values and sampled from a
constant-sized population. Fig. 3a shows the type I error of the test,

Fig. 3b shows the average D value and Fig. 3c shows the mean
values of ûk and ûs for each simulated value of u. The statistical
performance of the test depends greatly on u. For explanatory
convenience, we divide the range of u into three regions.

& REGION ONE (u < 10#4): Alignments generated under these low u
values have very few polymorphic sites (0–4 per alignment).
Although the error rate of the test appears low in this region
(Fig. 3a), alignments with such small amounts of variation are
not suitable for analysis. Furthermore, simulations in this region
are conditionally distributed, not random, because we discard
alignments with zero polymorphisms. Therefore the simulations
from this region are ignored.

& REGION TWO (10#4 < u < 0.1): Tajima’s D test performs very well
in this region, with type I error rates close to 5% (Fig. 3a) and a
mean D value close to zero (Fig. 3b). A small amount of
measurement error is noticeable, as only 500 simulations were
performed for each point.

& REGION THREE (u > 0.1): The error rate in this region rises rapidly
as u increases. If u > 5, the error rate is 100% (Fig. 3a) and ûk and ûs
reach maximal values because all sites are polymorphic (Fig. 3c).
In this region multiple changes at the same site are observed,
violating the ‘infinite sites’ assumption of the test and generating
error. Both ûk and ûs under-estimate true u. However the under-
estimation is greater for ûs, hence mean D > 0 (Fig. 3b).

Fig. 4 shows the performance of the Tajima’s D test on neutral
sequences sampled from exponentially growing populations.
These results differ from those simulated under constant popula-
tion size (Fig. 3) in several ways. Firstly, at high u values, we no
longer observemultiplemutations at the same site. This is because,
on average, the underlying phylogeny becomes shorter as ur

Fig. 3. The behaviour of Tajima’s D under a constant population size coalescent model. Simulations were conducted under a range of u values (horizontal axes). (a) The type I
error of Tajima’sD test for different values of u. Each point represents themean error of 500 simulations, and the grey linemarks the expected 5% error rate. The superimposed
histogram represents the distribution of u values from 96 empirical RNA virus data sets (see text and Table 1). (b) The mean values of Tajima’s D statistic for each values of u.
Each point represents the average of 500 simulations. The grey line marks the expected value of D, zero. (c) Mean values ûk and ûs for each simulated value of u. Each point
represents the average of 500 simulations. The gray line represents the expected relationship ûk ¼ ûs ¼ true.
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increases and therefore fewer polymorphisms are seen in the
sample (Slatkin and Hudson, 1991). Secondly, as u rises, average D
becomes increasingly negative (Fig. 4b) because exponential
growth causes the phylogeny to become more star-like (Slatkin
andHudson, 1991). Therefore, as ur increases, the level of diversity
stabilizes (Fig. 4c) and polymorphisms are more commonly seen at
low frequencies, which results in comparatively lower values for ûk
than for ûs (Fig. 4c). Previous studies have shown that the transition
from structured ‘constant-size’ phylogenies to star-like ‘exponen-
tial growth’ phylogenies occurs around ur = 1 (Slatkin andHudson,

1991; Pybus et al., 1999). In our simulations we used r = 200,
hence in Fig. 4 this transition occurs around u = 0.005. Above this
value, the error rate rises rapidly (Fig. 4a) and mean D values
become significantly negative (Fig. 4b), as expected by theory.

To test whether real RNA virus data sets are suitable for analysis
using Tajima’s D, we calculated u and Tajima’ D statistic for each of
96 RNA virus data sets (Table 1). We find that 17 out of 96 (17.7%)
of empirical data sets rejected the null hypothesis of neutral
evolution. In addition, we superimposed the frequency distribu-
tion of these empirical u values onto the type I error plots (Figs. 3a

Fig. 4. The behaviour of Tajima’s D under an exponential growth coalescent model. Simulations were identical to those shown in Fig. 2, except that a scaled growth rate of
r = 200 was used. See Fig. 2 legend for further details.

Table 1
Summary statistics and McDonald–Kreitman test p-values for RNA virus data sets.

RNA virus (gene) Sequence
diversitya (us)

Tajima’s
D statistic

Mean pairwise ingroup/
outgroup genetic distanceb

p-Value
of MK test

Australian bat lyssavirus (G) 0.0011 #1.6204 0.3398 0.0004
Acute bee paralysis virus (C) 0.0038 0.4417 0.3273 <0.0001
Akabane virus (NP) 0.0125 #0.2751 0.3808 <0.0001
Avian influenza A, serotype H5N1 (NP) 0.0252 #0.5852 0.0439 0.7663
Avian influenza A, serotype H7N1 (HA) 0.0486 #0.1258 0.0979 0.5382
Avian pneumovirus (N) 0.0070 0.8327 0.2779 0.0008
Barley yellow mosaic virus (CP) 0.0015 #1.2145 0.3923 0.0189
Bean yellow mosaic virus (CP) 0.0043 1.1846 0.3666 0.0335
Bluetongue virus (VP7) 0.0463 2.7726 0.5042 <0.0001
Bovine rotavirus (VP7) 0.0660 1.8774 0.2520 0.3057
Crimean-Congo haemorrhagic fever virus (NP) 0.0473 #0.2565 0.4981 <0.0001
Canine distemper virus (H) 0.0336 #1.1216 0.3627 0.0079
Chikungunga virus (E1) 0.0030 #0.3933 0.2935 0.7942
Classical swine fever virus (E2) 0.0046 0.7598 0.4454 <0.0001
Clover yellow vein virus (CP) 0.0428 0.1443 0.3433 <0.0001
Coxsackievirus B4 (VP1) 0.0387 2.0103 0.4862 <0.0001
Curcurbit yellow stunting disease virus (CP) 0.0015 0.6448 0.4175 <0.0001
Dengue virus, serotype 1 (E) 0.0337 #0.4532 0.3672 <0.0001
Dengue virus, serotype 1 (CM) 0.0023 0.0696 0.3928 <0.0001
Dengue virus, serotype 2 (E) 0.0057 #0.7046 0.4410 <0.0001
Dengue virus, serotype 3 (E) 0.0282 #0.2544 0.3700 <0.0001
Dengue virus, serotype 4 (E) 0.0035 #0.5530 0.4298 <0.0001
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Table 1 (Continued )

RNA virus (gene) Sequence
diversitya (us)

Tajima’s
D statistic

Mean pairwise ingroup/
outgroup genetic distanceb

p-Value
of MK test

Dobrava virus (N) 0.0120 0.5137 0.1438 0.7854
Eastern equine encephalitis virus (C) 0.0091 #1.5820 0.2968 0.0044
Eastern equine encephalitis virus (E1) 0.0059 #1.2072 0.5139 <0.0001
Enterovirus 71 (VP1) 0.0047 1.6338 0.5572 <0.0001
Equine influenza, serotype H3N8 (HA) 0.0140 #1.1273 0.2701 <0.0001
Feline immunodeficiency virus (Gag) 0.0026 1.2008 0.4259 <0.0001
Human influenza A virus, serotype H3N2 (HA) 0.0192 #0.7710 0.1378 0.3342
Human influenza A virus, serotype H3N2 (NP) 0.0184 #0.5076 0.0541 0.6635
Garlic latent virus (CP) 0.0059 2.2698 0.6762 <0.0001
Hepatitis C virus 1b (C) 0.0022 #1.3132 0.1630 0.6081
Hepatitis C virus 1b (E1E2) 0.0101 #0.0676 0.4250 0.3703
HIV type 1, subtype B (Env) 0.0133 #1.1718 0.0737 0.9962
HIV type 1, subtype B (Gag) 0.0138 #1.5351 0.2527 0.1574
Human polio virus type 2 (VP) 0.0068 #0.3438 0.3390 <0.0001
Human respiratory syncytial virus A (G) 0.0057 #1.0333 0.4381 0.2953
Human respiratory syncytial virus A (N) 0.0400 2.0114 0.1711 0.3360
Human respiratory syncytial virus B (G) 0.0032 #0.6702 0.4301 0.1642
Hantaan virus (G1) 0.0218 0.4124 0.3797 <0.0001
Hantaan virus (N) 0.0284 1.5128 0.3060 <0.0001
Viral hemorrhagic septicaemia virus (GP) 0.0335 #0.9365 0.6637 0.0211
Viral hemorrhagic septicaemia virus (N) 0.0019 #1.2589 0.6738 <0.0001
Highlands J virus (E1) 0.0028 #1.8739 0.2687 0.5030
Human astrovirus (C) 0.0005 2.2044 0.1921 1.0000
Human parainfluenza virus type 1 (HN) 0.0115 #0.7474 0.4116 0.0363
Human parainfluenza virus type 3 (HN) 0.0020 #0.2687 0.6420 <0.0001
Infectious pancreatic necrosis virus (VP2) 0.0019 2.0689 0.2008 0.2963
Japanese encephalitis virus (CP) 0.0232 #0.2415 0.3979 <0.0001
Japanese encephalitis virus (E) 0.0023 #0.2765 0.3743 <0.0001
Junin virus (NP) 0.0057 #1.0405 0.2784 0.2412
Leek yellow stripe virus (CP) 0.0235 1.4963 0.5699 <0.0001
Lettuce mosaic virus (CP) 0.0057 #0.9932 0.4807 0.0652
Maize dwarf mosaic virus (CP) 0.0023 0.3379 0.2797 <0.0001
Measles virus (HA) 0.0038 #0.2067 0.4955 <0.0001
Measles virus (N) 0.0179 #1.3717 0.3815 0.0081
Mumps virus (NP) 0.0148 #0.0931 0.5786 <0.0001
Onion yellow dwarf virus (CP) 0.0011 2.1820 0.2895 0.8045
Oropouche virus (NP) 0.0043 0.1407 0.3822 <0.0001
Pea seed-borne mosaic virus (CP) 0.0155 0.0979 0.5284 <0.0001
Peanut stripe virus (CP) 0.0183 #0.2940 0.0391 0.9102
Polio virus, serotype 1 (VP1) 0.0096 1.7809 0.3881 <0.0001
Porcine rotavirus (VP7) 0.0484 2.4807 0.2811 0.6181
Potato virus A (CP) 0.0533 #1.1543 0.0350 1.0000
Potato virus S (CP) 0.0136 #0.8098 0.4966 <0.0001
Potato virus X (CP) 0.0456 #1.1908 0.8398 <0.0001
Prunus necrotic ringspot virus (CP) 0.0029 #1.1711 0.6136 0.4305
Puumala virus (G2) 0.0254 1.4645 0.2651 0.0236
Puumala virus (N) 0.0100 2.1947 0.2207 0.1226
Rabies virus (G) 0.0309 0.3381 0.3610 0.0033
Rabies virus (N) 0.0073 0.7230 0.2571 0.7655
Rice black streaked dwarf virus (CP) 0.0442 #0.2376 0.1347 0.8355
Ross River Virus (E2) 0.0190 #0.2745 0.3393 0.0120
Rotavirus A (VP7) 0.0031 #1.7368 0.1587 0.0005
Rotavirus C (VP7) 0.0350 #1.3955 0.1797 0.1248
St. Louis encephalitis virus (E) 0.0178 #0.3246 0.4187 <0.0001
Sendai virus (NP) 0.0048 1.5436 0.3313 0.5678
Simian foamy virus (Env) 0.0022 #1.5075 0.4515 0.3615
Soybean mosaic virus (CP) 0.0014 0.0102 0.1811 <0.0001
Sugarcane mosaic virus (CP) 0.0023 0.4636 0.2232 0.2193
Sweet potato feathery mottle virus (CP) 0.0118 0.1388 0.3707 0.0183
Swine influenza virus, serotype H3N2 (HA) 0.0244 0.5441 0.1832 <0.0001
Tick-borne encephalitis virus (E) 0.0245 0.7927 0.1540 1.0000
Tomato spotted wilt virus (N) 0.0609 #0.8911 0.2742 0.4981
Tula virus (NP) 0.0148 1.5002 0.1838 0.3145
Turnip mosaic virus (CP) 0.0159 #1.6141 0.3746 0.0873
Venezuelan equine encephalitis virus (C) 0.0027 1.8437 0.6133 <0.0001
Venezuelan equine encephalitis virus (E) 0.0048 0.6638 0.5943 <0.0001
Western equine encephalitis virus (E1) 0.0063 #1.6399 0.2774 0.6705
West Nile virus (E) 0.0108 #0.9561 0.3944 0.0026
Wheat streak mosaic virus (CP) 0.0100 #2.0964 0.3162 0.0003
Wheat yellow mosaic virus (CP) 0.0039 #1.5503 0.3900 0.4392
Yellow fever virus (E) 0.0129 2.0628 0.5578 <0.0001
Yam mosaic virus (CP) 0.0068 0.4330 0.5368 <0.0001
Zucchini yellow mosaic virus (CP) 0.0045 #0.0098 0.4334 <0.0001

Significant MK test p-values (<0.05) are shown in bold.
a Calculated using the Watterson (1975) method.
b Calculated using the Jukes and Cantor (1969) method.
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and 44a). If the sequences are assumed to come from a constant-
sized population then all of the empirical data sets have u values
that lie within the working range of Tajima’s D test (Fig. 3a). If the
sequences are assumed to come from an exponentially growing
population then the suitability of the test drops dramatically
(Fig. 4a). Hence the primary problem arising when Tajima’s D is
applied as a neutrality test to RNA viruses is not the invalidation of
the infinite sites assumption caused by high mutation rates, but
rather the sensitivity of the test to changing population size or
population structure (Simonsen et al., 1995). Indeed, the sensi-
tivity of Tajima’s D to population size change means that it can be
used to detect population growth (e.g. Ramos-Onsins and Rozas,
2002), although this necessitates the user to assume that the
sequences in question have evolved neutrally.

4.2. Investigating the performance of the MK test

Fig. 5 shows the performance of the MK test on simulated
neutral sequences, performed using both the standard counting
method (McDonald andKreitman, 1991a; Eyre-Walker, 2006) and
our new ‘‘proportional’’ counting approach (see Section 2). For
both countingmethods, the test was applied to neutral sequences
from both constant-sized (Fig. 5a and b) and exponentially
growing (Fig. 5c and d) populations. In order to directly compare
the simulation results with our empirical RNA virus data sets, we
plot u against the mean pairwise genetic distance between the
ingroup and outgroup sequences (rather than against t, which is

unknown for our real data). The performance of theMK test under
each set of parameters (u and t) is represented as a circle whose
diameter is proportional to type I error. Error rates between 5%
and 10% are coloured orange and error rates greater than 10% are
coloured red.

We begin by considering the results obtained for constant-sized
populations (Fig. 5a and b). For explanatory convenience, we again
divide parameter space into different regions:

& REGION 1 (u < 10#2): Alignments generated under these u values
exhibit few differences between the ingroup and outgroup, and
of this variation, almost all is described by site types 2 and 3 (see
Fig. 2). As discussed in Section 2, the interpretation of these is
unambiguous, resulting in low type I error rates (below or
around 5%) for both implementation methods (Fig. 5a and b).
Many non-viral data sets that have been analysed using the MK
test have u values that lie in this region (e.g. Andolfatto, 2005;
Smith and Eyre-Walker, 2002; McDonald and Kreitman, 1991b).

& REGION 2 (10#2 < u < 3): In this range of u values, the number of
polymorphisms and fixed differences increases as ut increases, as
does the frequency of potentially ambiguous sites (site types 4, 5
and 6). Therefore type I error rises towards the upper-right-hand
corner of this region.When ut is comparatively low, the standard
counting method produces satisfactory error rates, but as ut
increases this method becomes unusable (Fig. 5a). In contrast,
our new proportional counting method performs very well on all
but the very highest values of ut (Fig. 5b).

Fig. 5. The behaviour on the MK test on neutral sequences. Each plot shows the type I error of the MK test under different parameter values. For a given value of u and t, the
diameter of each circle is proportional to the type I error of the test, averaged across 500 simulations. Green circles represent type I error rate<5%, orange circles between 5%
and 10%, and red circles>10%. Thin grey lines connect simulations performed under the same value of t but different values of u. The superimposed black points represent the
distribution in parameter space of the 96 empirical RNA virus data sets (see text and Table 1). (a) Standard counting method applied to sequences simulated under constant
population size. (b) New proportional counting method applied to sequences simulated under constant population size. (c) Standard counting method applied to sequences
simulated under exponential population growth. (d) New proportional counting method applied to sequences simulated under exponential population growth (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.).
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& REGION 3 (u > 3): This region is characterized by exceptionally
high u values, such that almost every ingroup site is polymorphic
and containsmultiplemutations (site types 6 and 7). Under these
conditions it is impossible to accurately estimate the number of
fixed differences (rd, sd). MK test is unlikely to generate
meaningful and robust results in this region, even if the type I
error sometimes appears low.

The performance of the MK test on neutral sequences from
exponentially growing populations is shown in Fig. 5c and d. Under
exponential growth the underlying phylogeny becomes star-like
and its total length is reduced. As a result of the latter change,
fewermutations accrue and potentially ambiguous sites (site types
4, 5, 6 and 7; see Fig. 2) are rarer, hence type I errors are lower than
those obtained for constant populations (Fig. 5). Under exponential
growth, only 40% of the sites were variable at the highest values of
ut, whereas under constant population size, 95–100% of sites were
variable when ut was very high. As before, our proportional
counting method exhibits lower type I error than the correspond-
ing values obtained using the standard method.

We also calculated ûs and themean outgroup–ingroup pairwise
genetic distance for 96 empirical RNA virus data sets (Table 1).
These empirical values are superimposed as black dots on each plot
in Fig. 5. It is clear that most RNA viral populations have
comparatively high u values (0.001 < u < 0.5 substitutions per
site). Using the standard counting method, many data sets
correspond to regions of parameter space with high type I error
(Fig. 5a and c, red and orange circles). However, our proportional
counting method reduces type I error in this region so that almost
all empirical data sets correspond to parameter regions with low
error (Fig. 5b and d, green circles). Table 1 also shows that the MK
test rejected the null hypothesis of neutrality for 58 out of 96
(60.4%) empirical RNA virus data sets.

5. Discussion

It is widely acknowledged that Tajima’s D is sensitive to
changes in population size or the existence of population structure
(e.g. Simonsen et al., 1995; Nielsen, 2005). A further concern with
using Tajima’s D test on viral populations is that their high
evolutionary rates would invalidate the test’s key assumption that
each mutation occurs at a different site (the ‘infinite sites’
assumption). In our study we simulated sequences under an
exhaustive range of u values to assess the type I error of Tajima’s D
and also analysed a compilation of 96 alignments in order to
determine the empirical range of u values for RNA viruses (Table 1).
We conclude that for constant-size populations, violation of the
infinite sites assumption is not the primary problem—all our RNA
viral data sets have u values that lie in the working range of the
Tajima’s D test. In contrast, we find that exponential population
growth causes a reduction in the working range of Tajima’s D test
(Figs. 3 and 4), which is expected given that critical values for the
test are obtained under the assumption of constant population
size. It is usually impossible to know a priori if a sampled
populationmeets this and other assumptions of Tajima’sD test. For
example, it is likely that many viral populations of interest will
have experienced a complex form of population growth (during an
epidemic or directly following transmission to a new host) or been
subject to population structure. In our study, it was not feasible to
perform simulations under all possible population histories.
Therefore we chose two representative scenarios (constant-size
and exponential growth) that give rise to very different phylo-
genies andwhich likely span the range of empirically observed tree
shapes. A more general solution to this problem was developed by
Edwards et al. (2006), who, for each data set, simulated a null
distribution of D upon phylogenies whose shapes are highly

supported by the data. This approach will reduce the error rate of
Tajima’sD test, but at the cost of reduced computational efficiency.

We examined the error rate of the MK test using both the
standard site counting method (McDonald and Kreitman, 1991a)
and our new proportional counting approach (see Section 2). Using
the former method, we observed raised type I errors when u was
larger than !0.01 (Fig. 5a). In this region of parameter space most
variable sites are 2, 3 or 4-state polymorphic (site types 4–7; Fig. 2)
and the standard method classifies such sites as polymorphic.
McDonald and Kreitman (1991b), in response to Whittam and Nei
(1991) andGraur (1991), justified their implementation by arguing
that any algorithm for typing substitutions as fixed or polymorphic
will affect the numbers of replacement and silent substitutions
equally and therefore not affect their test, which depends on ratios.
This argument appears correct when the infinite sites assumption
is valid. However, if ut is large then nucleotide saturation occurs
and the alignment contains more sites of types 4 and 6 (Fig. 2).
Because these sites are, on average, more likely to be replacement
sites than silent, the standard counting method (which always
classes such sites as polymorphic) will tend to overestimate the
number of replacement polymorphisms relative to silent poly-
morphisms. Simulation results show that our new proportional
countingmethod ismore robust, allowing theMK test to be applied
even when ut is very high (Fig. 5b) and reducing the average type I
error (over all parameter space) from 20.4% to 5.3%.

TheMK test has a lower error rate on sequences sampled from a
growing population than on corresponding sequences sampled
from a constant population (Fig. 5). This is because population
growth results in shorter trees that accrue fewer mutations,
leading to proportionally fewer 2, 3 and 4-state polymorphic sites
(Fig. 2). Lastly, we note that the empirical RNA virus data sets are
placed in a region of parameter space associated with high type I
error if the standard counting method is used (Fig. 5a). However,
the MK test has good statistical properties in this region if the new
proportional counting method is used, indicating that this
approach can be reliably applied to RNA virus genomes (Fig. 5b).

Our analyses focussed on the type I error of Tajima’s D and the
MK test and did not directly measure the probability of failing to
reject the null hypothesiswhen it is false (type II error, or statistical
power). Measuring the statistical power of neutrality tests is a
formidable task, owing to the computational difficulties of
simulating sequences under selection. Furthermore, the multi-
plicity of possible scenarios under which selection could occur (see
Zhai et al., 2009) make it difficult to obtain results of general
applicability. However, we applied Tajima’s D and the MK test to a
compilation of 96 RNA virus data sets (Table 1) and found that the
MK test rejected the null hypothesis of neutrality more than three
times as often as Tajima’s D (61.4%. and 17.7% of data sets,
respectively). Since our simulation results demonstrate that the
MK test (when used with the proportional counting method) has
correct type I error, we conclude that the MK test has significantly
greater statistical power than the Tajima’s D test. We observed a
positive correlation between the p-value of the MK test and the
mean ingroup/outgroup pairwise genetic distance (results not
shown). The failure of the MK test to reject neutrality for !40% of
the RNA virus data sets may be a consequence of the presence of
low frequency, slightly deleterious mutations that have yet to be
purged by purifying selection. Such mutations appear to be
common in RNA virus populations (Pybus et al., 2007; Hughes and
Hughes, 2007). Charlesworth and Eyre-Walker (2008) show that
deleterious mutations can reduce the power of the MK test to
detect adaptive evolution and propose the removal of low-
frequency polymorphisms as a solution to this problem. The effect
of more complex phenomena – such as epistasis and comple-
mentation within co-infected cells – on the power on the MK test
remains to be investigated.
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In summary, our results indicate that the MK test with
proportional site counting is suitable for analysis on RNA virus
data sets. This test is quick to compute and makes a minimal
number of assumptions, making it potentially more useful for the
analysis of very large-scale genomic data sets than dn/dsmethods.
However, unlike dn/ds methods, the MK test cannot be used to
pinpoint specific sites under selection, although it can estimate the
rate of adaptive substitution of a gene (Smith and Eyre-Walker,
2002). The MK test can also be applied to intra-species data sets
that have been sampled serially through time (Williamson, 2003).
When applied to intra-species data, theMK testwill likely have low
type I error (as ut will be small) but could be statistically weak if
the ingroup/outgroup genetic distance is low. In future work we
aim to study the application of the MK test to serially sampled
intra-species sequences.
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